Description: Alternate definition of the converse reflexive relation predicate. (Contributed by Peter Mazsa, 25-May-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfcnvrefrel5 | ⊢ ( CnvRefRel 𝑅 ↔ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑥 = 𝑦 ) ∧ Rel 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcnvrefrel4 | ⊢ ( CnvRefRel 𝑅 ↔ ( 𝑅 ⊆ I ∧ Rel 𝑅 ) ) | |
| 2 | cnvref5 | ⊢ ( Rel 𝑅 → ( 𝑅 ⊆ I ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑥 = 𝑦 ) ) ) | |
| 3 | 1 2 | bianim | ⊢ ( CnvRefRel 𝑅 ↔ ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝑥 = 𝑦 ) ∧ Rel 𝑅 ) ) |