| Step | Hyp | Ref | Expression | 
						
							| 1 |  | relres | ⊢ Rel  ( 𝑅  ↾  𝐴 ) | 
						
							| 2 |  | dfantisymrel5 | ⊢ (  AntisymRel  ( 𝑅  ↾  𝐴 )  ↔  ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ( 𝑅  ↾  𝐴 ) 𝑦  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑥 )  →  𝑥  =  𝑦 )  ∧  Rel  ( 𝑅  ↾  𝐴 ) ) ) | 
						
							| 3 | 1 2 | mpbiran2 | ⊢ (  AntisymRel  ( 𝑅  ↾  𝐴 )  ↔  ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ( 𝑅  ↾  𝐴 ) 𝑦  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑥 )  →  𝑥  =  𝑦 ) ) | 
						
							| 4 |  | brres | ⊢ ( 𝑦  ∈  V  →  ( 𝑥 ( 𝑅  ↾  𝐴 ) 𝑦  ↔  ( 𝑥  ∈  𝐴  ∧  𝑥 𝑅 𝑦 ) ) ) | 
						
							| 5 | 4 | elv | ⊢ ( 𝑥 ( 𝑅  ↾  𝐴 ) 𝑦  ↔  ( 𝑥  ∈  𝐴  ∧  𝑥 𝑅 𝑦 ) ) | 
						
							| 6 |  | brres | ⊢ ( 𝑥  ∈  V  →  ( 𝑦 ( 𝑅  ↾  𝐴 ) 𝑥  ↔  ( 𝑦  ∈  𝐴  ∧  𝑦 𝑅 𝑥 ) ) ) | 
						
							| 7 | 6 | elv | ⊢ ( 𝑦 ( 𝑅  ↾  𝐴 ) 𝑥  ↔  ( 𝑦  ∈  𝐴  ∧  𝑦 𝑅 𝑥 ) ) | 
						
							| 8 | 5 7 | anbi12i | ⊢ ( ( 𝑥 ( 𝑅  ↾  𝐴 ) 𝑦  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑥 )  ↔  ( ( 𝑥  ∈  𝐴  ∧  𝑥 𝑅 𝑦 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑦 𝑅 𝑥 ) ) ) | 
						
							| 9 |  | an4 | ⊢ ( ( ( 𝑥  ∈  𝐴  ∧  𝑥 𝑅 𝑦 )  ∧  ( 𝑦  ∈  𝐴  ∧  𝑦 𝑅 𝑥 ) )  ↔  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑥 ) ) ) | 
						
							| 10 | 8 9 | bitri | ⊢ ( ( 𝑥 ( 𝑅  ↾  𝐴 ) 𝑦  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑥 )  ↔  ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑥 ) ) ) | 
						
							| 11 | 10 | imbi1i | ⊢ ( ( ( 𝑥 ( 𝑅  ↾  𝐴 ) 𝑦  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑥 )  →  𝑥  =  𝑦 )  ↔  ( ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑥 ) )  →  𝑥  =  𝑦 ) ) | 
						
							| 12 | 11 | 2albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ( 𝑅  ↾  𝐴 ) 𝑦  ∧  𝑦 ( 𝑅  ↾  𝐴 ) 𝑥 )  →  𝑥  =  𝑦 )  ↔  ∀ 𝑥 ∀ 𝑦 ( ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑥 ) )  →  𝑥  =  𝑦 ) ) | 
						
							| 13 |  | r2alan | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  ∧  ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑥 ) )  →  𝑥  =  𝑦 )  ↔  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑥 )  →  𝑥  =  𝑦 ) ) | 
						
							| 14 | 3 12 13 | 3bitri | ⊢ (  AntisymRel  ( 𝑅  ↾  𝐴 )  ↔  ∀ 𝑥  ∈  𝐴 ∀ 𝑦  ∈  𝐴 ( ( 𝑥 𝑅 𝑦  ∧  𝑦 𝑅 𝑥 )  →  𝑥  =  𝑦 ) ) |