Metamath Proof Explorer


Theorem r2alan

Description: Double restricted universal quantification, special case. (Contributed by Peter Mazsa, 17-Jun-2020)

Ref Expression
Assertion r2alan ( ∀ 𝑥𝑦 ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) → 𝜓 ) ↔ ∀ 𝑥𝐴𝑦𝐵 ( 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 impexp ( ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) → 𝜓 ) ↔ ( ( 𝑥𝐴𝑦𝐵 ) → ( 𝜑𝜓 ) ) )
2 1 2albii ( ∀ 𝑥𝑦 ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) → 𝜓 ) ↔ ∀ 𝑥𝑦 ( ( 𝑥𝐴𝑦𝐵 ) → ( 𝜑𝜓 ) ) )
3 r2al ( ∀ 𝑥𝐴𝑦𝐵 ( 𝜑𝜓 ) ↔ ∀ 𝑥𝑦 ( ( 𝑥𝐴𝑦𝐵 ) → ( 𝜑𝜓 ) ) )
4 2 3 bitr4i ( ∀ 𝑥𝑦 ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝜑 ) → 𝜓 ) ↔ ∀ 𝑥𝐴𝑦𝐵 ( 𝜑𝜓 ) )