Metamath Proof Explorer


Theorem r2alan

Description: Double restricted universal quantification, special case. (Contributed by Peter Mazsa, 17-Jun-2020)

Ref Expression
Assertion r2alan xyxAyBφψxAyBφψ

Proof

Step Hyp Ref Expression
1 impexp xAyBφψxAyBφψ
2 1 2albii xyxAyBφψxyxAyBφψ
3 r2al xAyBφψxyxAyBφψ
4 2 3 bitr4i xyxAyBφψxAyBφψ