Metamath Proof Explorer


Theorem antisymrelressn

Description: (Contributed by Peter Mazsa, 29-Jun-2024)

Ref Expression
Assertion antisymrelressn AntisymRel ( 𝑅 ↾ { 𝐴 } )

Proof

Step Hyp Ref Expression
1 antisymressn 𝑥𝑦 ( ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑦𝑦 ( 𝑅 ↾ { 𝐴 } ) 𝑥 ) → 𝑥 = 𝑦 )
2 relres Rel ( 𝑅 ↾ { 𝐴 } )
3 dfantisymrel5 ( AntisymRel ( 𝑅 ↾ { 𝐴 } ) ↔ ( ∀ 𝑥𝑦 ( ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑦𝑦 ( 𝑅 ↾ { 𝐴 } ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ Rel ( 𝑅 ↾ { 𝐴 } ) ) )
4 1 2 3 mpbir2an AntisymRel ( 𝑅 ↾ { 𝐴 } )