Description: (Contributed by Peter Mazsa, 29-Jun-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | antisymrelressn | ⊢ AntisymRel ( 𝑅 ↾ { 𝐴 } ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | antisymressn | ⊢ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑦 ∧ 𝑦 ( 𝑅 ↾ { 𝐴 } ) 𝑥 ) → 𝑥 = 𝑦 ) | |
| 2 | relres | ⊢ Rel ( 𝑅 ↾ { 𝐴 } ) | |
| 3 | dfantisymrel5 | ⊢ ( AntisymRel ( 𝑅 ↾ { 𝐴 } ) ↔ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑦 ∧ 𝑦 ( 𝑅 ↾ { 𝐴 } ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ Rel ( 𝑅 ↾ { 𝐴 } ) ) ) | |
| 4 | 1 2 3 | mpbir2an | ⊢ AntisymRel ( 𝑅 ↾ { 𝐴 } ) |