Description: (Contributed by Peter Mazsa, 29-Jun-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | antisymrelressn | ⊢ AntisymRel ( 𝑅 ↾ { 𝐴 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | antisymressn | ⊢ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑦 ∧ 𝑦 ( 𝑅 ↾ { 𝐴 } ) 𝑥 ) → 𝑥 = 𝑦 ) | |
2 | relres | ⊢ Rel ( 𝑅 ↾ { 𝐴 } ) | |
3 | dfantisymrel5 | ⊢ ( AntisymRel ( 𝑅 ↾ { 𝐴 } ) ↔ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ( 𝑅 ↾ { 𝐴 } ) 𝑦 ∧ 𝑦 ( 𝑅 ↾ { 𝐴 } ) 𝑥 ) → 𝑥 = 𝑦 ) ∧ Rel ( 𝑅 ↾ { 𝐴 } ) ) ) | |
4 | 1 2 3 | mpbir2an | ⊢ AntisymRel ( 𝑅 ↾ { 𝐴 } ) |