Metamath Proof Explorer


Theorem antisymrelressn

Description: (Contributed by Peter Mazsa, 29-Jun-2024)

Ref Expression
Assertion antisymrelressn AntisymRel R A

Proof

Step Hyp Ref Expression
1 antisymressn x y x R A y y R A x x = y
2 relres Rel R A
3 dfantisymrel5 AntisymRel R A x y x R A y y R A x x = y Rel R A
4 1 2 3 mpbir2an AntisymRel R A