Description: (Contributed by Peter Mazsa, 29-Jun-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | antisymrelressn | |- AntisymRel ( R |` { A } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | antisymressn | |- A. x A. y ( ( x ( R |` { A } ) y /\ y ( R |` { A } ) x ) -> x = y ) |
|
2 | relres | |- Rel ( R |` { A } ) |
|
3 | dfantisymrel5 | |- ( AntisymRel ( R |` { A } ) <-> ( A. x A. y ( ( x ( R |` { A } ) y /\ y ( R |` { A } ) x ) -> x = y ) /\ Rel ( R |` { A } ) ) ) |
|
4 | 1 2 3 | mpbir2an | |- AntisymRel ( R |` { A } ) |