Description: (Contributed by Peter Mazsa, 29-Jun-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | antisymrelressn | |- AntisymRel ( R |` { A } ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | antisymressn |  |-  A. x A. y ( ( x ( R |` { A } ) y /\ y ( R |` { A } ) x ) -> x = y ) | |
| 2 | relres |  |-  Rel ( R |` { A } ) | |
| 3 | dfantisymrel5 |  |-  ( AntisymRel ( R |` { A } ) <-> ( A. x A. y ( ( x ( R |` { A } ) y /\ y ( R |` { A } ) x ) -> x = y ) /\ Rel ( R |` { A } ) ) ) | |
| 4 | 1 2 3 | mpbir2an |  |-  AntisymRel ( R |` { A } ) |