Step |
Hyp |
Ref |
Expression |
1 |
|
brressn |
|- ( ( x e. _V /\ y e. _V ) -> ( x ( R |` { A } ) y <-> ( x = A /\ x R y ) ) ) |
2 |
1
|
el2v |
|- ( x ( R |` { A } ) y <-> ( x = A /\ x R y ) ) |
3 |
2
|
simplbi |
|- ( x ( R |` { A } ) y -> x = A ) |
4 |
|
brressn |
|- ( ( y e. _V /\ x e. _V ) -> ( y ( R |` { A } ) x <-> ( y = A /\ y R x ) ) ) |
5 |
4
|
el2v |
|- ( y ( R |` { A } ) x <-> ( y = A /\ y R x ) ) |
6 |
5
|
simplbi |
|- ( y ( R |` { A } ) x -> y = A ) |
7 |
|
eqtr3 |
|- ( ( x = A /\ y = A ) -> x = y ) |
8 |
3 6 7
|
syl2an |
|- ( ( x ( R |` { A } ) y /\ y ( R |` { A } ) x ) -> x = y ) |
9 |
8
|
gen2 |
|- A. x A. y ( ( x ( R |` { A } ) y /\ y ( R |` { A } ) x ) -> x = y ) |