Metamath Proof Explorer


Theorem antisymressn

Description: Every class ' R ' restricted to the singleton of the class ' A ' (see ressn2 ) is antisymmetric. (Contributed by Peter Mazsa, 11-Jun-2024)

Ref Expression
Assertion antisymressn
|- A. x A. y ( ( x ( R |` { A } ) y /\ y ( R |` { A } ) x ) -> x = y )

Proof

Step Hyp Ref Expression
1 brressn
 |-  ( ( x e. _V /\ y e. _V ) -> ( x ( R |` { A } ) y <-> ( x = A /\ x R y ) ) )
2 1 el2v
 |-  ( x ( R |` { A } ) y <-> ( x = A /\ x R y ) )
3 2 simplbi
 |-  ( x ( R |` { A } ) y -> x = A )
4 brressn
 |-  ( ( y e. _V /\ x e. _V ) -> ( y ( R |` { A } ) x <-> ( y = A /\ y R x ) ) )
5 4 el2v
 |-  ( y ( R |` { A } ) x <-> ( y = A /\ y R x ) )
6 5 simplbi
 |-  ( y ( R |` { A } ) x -> y = A )
7 eqtr3
 |-  ( ( x = A /\ y = A ) -> x = y )
8 3 6 7 syl2an
 |-  ( ( x ( R |` { A } ) y /\ y ( R |` { A } ) x ) -> x = y )
9 8 gen2
 |-  A. x A. y ( ( x ( R |` { A } ) y /\ y ( R |` { A } ) x ) -> x = y )