Metamath Proof Explorer


Theorem antisymressn

Description: Every class ' R ' restricted to the singleton of the class ' A ' (see ressn2 ) is antisymmetric. (Contributed by Peter Mazsa, 11-Jun-2024)

Ref Expression
Assertion antisymressn xyxRAyyRAxx=y

Proof

Step Hyp Ref Expression
1 brressn xVyVxRAyx=AxRy
2 1 el2v xRAyx=AxRy
3 2 simplbi xRAyx=A
4 brressn yVxVyRAxy=AyRx
5 4 el2v yRAxy=AyRx
6 5 simplbi yRAxy=A
7 eqtr3 x=Ay=Ax=y
8 3 6 7 syl2an xRAyyRAxx=y
9 8 gen2 xyxRAyyRAxx=y