Metamath Proof Explorer


Definition df-bj-addc

Description: Define the additions on the extended complex numbers (on the subset of ( CCbar X. CCbar ) where it makes sense) and on the complex projective line (Riemann sphere). We use the plural in "additions" since these are two different operations, even though +cc is overloaded. (Contributed by BJ, 22-Jun-2019)

Ref Expression
Assertion df-bj-addc + = x × × ^ × ^ I if 1 st x = 2 nd x = if 1 st x if 2 nd x 1 st 1 st x + 𝑹 1 st 2 nd x 2 nd 1 st x + 𝑹 2 nd 2 nd x 2 nd x 1 st x

Detailed syntax breakdown

Step Hyp Ref Expression
0 caddcc class +
1 vx setvar x
2 cc class
3 cccbar class
4 2 3 cxp class ×
5 3 2 cxp class ×
6 4 5 cun class × ×
7 ccchat class ^
8 7 7 cxp class ^ × ^
9 cid class I
10 cccinfty class
11 9 10 cres class I
12 8 11 cun class ^ × ^ I
13 6 12 cun class × × ^ × ^ I
14 c1st class 1 st
15 1 cv setvar x
16 15 14 cfv class 1 st x
17 cinfty class
18 16 17 wceq wff 1 st x =
19 c2nd class 2 nd
20 15 19 cfv class 2 nd x
21 20 17 wceq wff 2 nd x =
22 18 21 wo wff 1 st x = 2 nd x =
23 16 2 wcel wff 1 st x
24 20 2 wcel wff 2 nd x
25 16 14 cfv class 1 st 1 st x
26 cplr class + 𝑹
27 20 14 cfv class 1 st 2 nd x
28 25 27 26 co class 1 st 1 st x + 𝑹 1 st 2 nd x
29 16 19 cfv class 2 nd 1 st x
30 20 19 cfv class 2 nd 2 nd x
31 29 30 26 co class 2 nd 1 st x + 𝑹 2 nd 2 nd x
32 28 31 cop class 1 st 1 st x + 𝑹 1 st 2 nd x 2 nd 1 st x + 𝑹 2 nd 2 nd x
33 24 32 20 cif class if 2 nd x 1 st 1 st x + 𝑹 1 st 2 nd x 2 nd 1 st x + 𝑹 2 nd 2 nd x 2 nd x
34 23 33 16 cif class if 1 st x if 2 nd x 1 st 1 st x + 𝑹 1 st 2 nd x 2 nd 1 st x + 𝑹 2 nd 2 nd x 2 nd x 1 st x
35 22 17 34 cif class if 1 st x = 2 nd x = if 1 st x if 2 nd x 1 st 1 st x + 𝑹 1 st 2 nd x 2 nd 1 st x + 𝑹 2 nd 2 nd x 2 nd x 1 st x
36 1 13 35 cmpt class x × × ^ × ^ I if 1 st x = 2 nd x = if 1 st x if 2 nd x 1 st 1 st x + 𝑹 1 st 2 nd x 2 nd 1 st x + 𝑹 2 nd 2 nd x 2 nd x 1 st x
37 0 36 wceq wff + = x × × ^ × ^ I if 1 st x = 2 nd x = if 1 st x if 2 nd x 1 st 1 st x + 𝑹 1 st 2 nd x 2 nd 1 st x + 𝑹 2 nd 2 nd x 2 nd x 1 st x