Metamath Proof Explorer


Definition df-bj-tophom

Description: Define the set of continuous functions (morphisms of topological spaces) between two topological spaces. Similar to df-cn (which is in terms of topologies instead of topological spaces). (Contributed by BJ, 10-Feb-2022)

Ref Expression
Assertion df-bj-tophom Top = x TopSp , y TopSp f Base x Set Base y | u TopOpen y f -1 u TopOpen x

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctophom class Top
1 vx setvar x
2 ctps class TopSp
3 vy setvar y
4 vf setvar f
5 cbs class Base
6 1 cv setvar x
7 6 5 cfv class Base x
8 csethom class Set
9 3 cv setvar y
10 9 5 cfv class Base y
11 7 10 8 co class Base x Set Base y
12 vu setvar u
13 ctopn class TopOpen
14 9 13 cfv class TopOpen y
15 4 cv setvar f
16 15 ccnv class f -1
17 12 cv setvar u
18 16 17 cima class f -1 u
19 6 13 cfv class TopOpen x
20 18 19 wcel wff f -1 u TopOpen x
21 20 12 14 wral wff u TopOpen y f -1 u TopOpen x
22 21 4 11 crab class f Base x Set Base y | u TopOpen y f -1 u TopOpen x
23 1 3 2 2 22 cmpo class x TopSp , y TopSp f Base x Set Base y | u TopOpen y f -1 u TopOpen x
24 0 23 wceq wff Top = x TopSp , y TopSp f Base x Set Base y | u TopOpen y f -1 u TopOpen x