Step |
Hyp |
Ref |
Expression |
0 |
|
ctophom |
|- -Top-> |
1 |
|
vx |
|- x |
2 |
|
ctps |
|- TopSp |
3 |
|
vy |
|- y |
4 |
|
vf |
|- f |
5 |
|
cbs |
|- Base |
6 |
1
|
cv |
|- x |
7 |
6 5
|
cfv |
|- ( Base ` x ) |
8 |
|
csethom |
|- -Set-> |
9 |
3
|
cv |
|- y |
10 |
9 5
|
cfv |
|- ( Base ` y ) |
11 |
7 10 8
|
co |
|- ( ( Base ` x ) -Set-> ( Base ` y ) ) |
12 |
|
vu |
|- u |
13 |
|
ctopn |
|- TopOpen |
14 |
9 13
|
cfv |
|- ( TopOpen ` y ) |
15 |
4
|
cv |
|- f |
16 |
15
|
ccnv |
|- `' f |
17 |
12
|
cv |
|- u |
18 |
16 17
|
cima |
|- ( `' f " u ) |
19 |
6 13
|
cfv |
|- ( TopOpen ` x ) |
20 |
18 19
|
wcel |
|- ( `' f " u ) e. ( TopOpen ` x ) |
21 |
20 12 14
|
wral |
|- A. u e. ( TopOpen ` y ) ( `' f " u ) e. ( TopOpen ` x ) |
22 |
21 4 11
|
crab |
|- { f e. ( ( Base ` x ) -Set-> ( Base ` y ) ) | A. u e. ( TopOpen ` y ) ( `' f " u ) e. ( TopOpen ` x ) } |
23 |
1 3 2 2 22
|
cmpo |
|- ( x e. TopSp , y e. TopSp |-> { f e. ( ( Base ` x ) -Set-> ( Base ` y ) ) | A. u e. ( TopOpen ` y ) ( `' f " u ) e. ( TopOpen ` x ) } ) |
24 |
0 23
|
wceq |
|- -Top-> = ( x e. TopSp , y e. TopSp |-> { f e. ( ( Base ` x ) -Set-> ( Base ` y ) ) | A. u e. ( TopOpen ` y ) ( `' f " u ) e. ( TopOpen ` x ) } ) |