Metamath Proof Explorer


Definition df-bj-tophom

Description: Define the set of continuous functions (morphisms of topological spaces) between two topological spaces. Similar to df-cn (which is in terms of topologies instead of topological spaces). (Contributed by BJ, 10-Feb-2022)

Ref Expression
Assertion df-bj-tophom
|- -Top-> = ( x e. TopSp , y e. TopSp |-> { f e. ( ( Base ` x ) -Set-> ( Base ` y ) ) | A. u e. ( TopOpen ` y ) ( `' f " u ) e. ( TopOpen ` x ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctophom
 |-  -Top->
1 vx
 |-  x
2 ctps
 |-  TopSp
3 vy
 |-  y
4 vf
 |-  f
5 cbs
 |-  Base
6 1 cv
 |-  x
7 6 5 cfv
 |-  ( Base ` x )
8 csethom
 |-  -Set->
9 3 cv
 |-  y
10 9 5 cfv
 |-  ( Base ` y )
11 7 10 8 co
 |-  ( ( Base ` x ) -Set-> ( Base ` y ) )
12 vu
 |-  u
13 ctopn
 |-  TopOpen
14 9 13 cfv
 |-  ( TopOpen ` y )
15 4 cv
 |-  f
16 15 ccnv
 |-  `' f
17 12 cv
 |-  u
18 16 17 cima
 |-  ( `' f " u )
19 6 13 cfv
 |-  ( TopOpen ` x )
20 18 19 wcel
 |-  ( `' f " u ) e. ( TopOpen ` x )
21 20 12 14 wral
 |-  A. u e. ( TopOpen ` y ) ( `' f " u ) e. ( TopOpen ` x )
22 21 4 11 crab
 |-  { f e. ( ( Base ` x ) -Set-> ( Base ` y ) ) | A. u e. ( TopOpen ` y ) ( `' f " u ) e. ( TopOpen ` x ) }
23 1 3 2 2 22 cmpo
 |-  ( x e. TopSp , y e. TopSp |-> { f e. ( ( Base ` x ) -Set-> ( Base ` y ) ) | A. u e. ( TopOpen ` y ) ( `' f " u ) e. ( TopOpen ` x ) } )
24 0 23 wceq
 |-  -Top-> = ( x e. TopSp , y e. TopSp |-> { f e. ( ( Base ` x ) -Set-> ( Base ` y ) ) | A. u e. ( TopOpen ` y ) ( `' f " u ) e. ( TopOpen ` x ) } )