Metamath Proof Explorer


Definition df-bj-tophom

Description: Define the set of continuous functions (morphisms of topological spaces) between two topological spaces. Similar to df-cn (which is in terms of topologies instead of topological spaces). (Contributed by BJ, 10-Feb-2022)

Ref Expression
Assertion df-bj-tophom Top⟶ = ( 𝑥 ∈ TopSp , 𝑦 ∈ TopSp ↦ { 𝑓 ∈ ( ( Base ‘ 𝑥 ) Set⟶ ( Base ‘ 𝑦 ) ) ∣ ∀ 𝑢 ∈ ( TopOpen ‘ 𝑦 ) ( 𝑓𝑢 ) ∈ ( TopOpen ‘ 𝑥 ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctophom Top
1 vx 𝑥
2 ctps TopSp
3 vy 𝑦
4 vf 𝑓
5 cbs Base
6 1 cv 𝑥
7 6 5 cfv ( Base ‘ 𝑥 )
8 csethom Set
9 3 cv 𝑦
10 9 5 cfv ( Base ‘ 𝑦 )
11 7 10 8 co ( ( Base ‘ 𝑥 ) Set⟶ ( Base ‘ 𝑦 ) )
12 vu 𝑢
13 ctopn TopOpen
14 9 13 cfv ( TopOpen ‘ 𝑦 )
15 4 cv 𝑓
16 15 ccnv 𝑓
17 12 cv 𝑢
18 16 17 cima ( 𝑓𝑢 )
19 6 13 cfv ( TopOpen ‘ 𝑥 )
20 18 19 wcel ( 𝑓𝑢 ) ∈ ( TopOpen ‘ 𝑥 )
21 20 12 14 wral 𝑢 ∈ ( TopOpen ‘ 𝑦 ) ( 𝑓𝑢 ) ∈ ( TopOpen ‘ 𝑥 )
22 21 4 11 crab { 𝑓 ∈ ( ( Base ‘ 𝑥 ) Set⟶ ( Base ‘ 𝑦 ) ) ∣ ∀ 𝑢 ∈ ( TopOpen ‘ 𝑦 ) ( 𝑓𝑢 ) ∈ ( TopOpen ‘ 𝑥 ) }
23 1 3 2 2 22 cmpo ( 𝑥 ∈ TopSp , 𝑦 ∈ TopSp ↦ { 𝑓 ∈ ( ( Base ‘ 𝑥 ) Set⟶ ( Base ‘ 𝑦 ) ) ∣ ∀ 𝑢 ∈ ( TopOpen ‘ 𝑦 ) ( 𝑓𝑢 ) ∈ ( TopOpen ‘ 𝑥 ) } )
24 0 23 wceq Top⟶ = ( 𝑥 ∈ TopSp , 𝑦 ∈ TopSp ↦ { 𝑓 ∈ ( ( Base ‘ 𝑥 ) Set⟶ ( Base ‘ 𝑦 ) ) ∣ ∀ 𝑢 ∈ ( TopOpen ‘ 𝑦 ) ( 𝑓𝑢 ) ∈ ( TopOpen ‘ 𝑥 ) } )