| Step |
Hyp |
Ref |
Expression |
| 0 |
|
ctophom |
⊢ Top⟶ |
| 1 |
|
vx |
⊢ 𝑥 |
| 2 |
|
ctps |
⊢ TopSp |
| 3 |
|
vy |
⊢ 𝑦 |
| 4 |
|
vf |
⊢ 𝑓 |
| 5 |
|
cbs |
⊢ Base |
| 6 |
1
|
cv |
⊢ 𝑥 |
| 7 |
6 5
|
cfv |
⊢ ( Base ‘ 𝑥 ) |
| 8 |
|
csethom |
⊢ Set⟶ |
| 9 |
3
|
cv |
⊢ 𝑦 |
| 10 |
9 5
|
cfv |
⊢ ( Base ‘ 𝑦 ) |
| 11 |
7 10 8
|
co |
⊢ ( ( Base ‘ 𝑥 ) Set⟶ ( Base ‘ 𝑦 ) ) |
| 12 |
|
vu |
⊢ 𝑢 |
| 13 |
|
ctopn |
⊢ TopOpen |
| 14 |
9 13
|
cfv |
⊢ ( TopOpen ‘ 𝑦 ) |
| 15 |
4
|
cv |
⊢ 𝑓 |
| 16 |
15
|
ccnv |
⊢ ◡ 𝑓 |
| 17 |
12
|
cv |
⊢ 𝑢 |
| 18 |
16 17
|
cima |
⊢ ( ◡ 𝑓 “ 𝑢 ) |
| 19 |
6 13
|
cfv |
⊢ ( TopOpen ‘ 𝑥 ) |
| 20 |
18 19
|
wcel |
⊢ ( ◡ 𝑓 “ 𝑢 ) ∈ ( TopOpen ‘ 𝑥 ) |
| 21 |
20 12 14
|
wral |
⊢ ∀ 𝑢 ∈ ( TopOpen ‘ 𝑦 ) ( ◡ 𝑓 “ 𝑢 ) ∈ ( TopOpen ‘ 𝑥 ) |
| 22 |
21 4 11
|
crab |
⊢ { 𝑓 ∈ ( ( Base ‘ 𝑥 ) Set⟶ ( Base ‘ 𝑦 ) ) ∣ ∀ 𝑢 ∈ ( TopOpen ‘ 𝑦 ) ( ◡ 𝑓 “ 𝑢 ) ∈ ( TopOpen ‘ 𝑥 ) } |
| 23 |
1 3 2 2 22
|
cmpo |
⊢ ( 𝑥 ∈ TopSp , 𝑦 ∈ TopSp ↦ { 𝑓 ∈ ( ( Base ‘ 𝑥 ) Set⟶ ( Base ‘ 𝑦 ) ) ∣ ∀ 𝑢 ∈ ( TopOpen ‘ 𝑦 ) ( ◡ 𝑓 “ 𝑢 ) ∈ ( TopOpen ‘ 𝑥 ) } ) |
| 24 |
0 23
|
wceq |
⊢ Top⟶ = ( 𝑥 ∈ TopSp , 𝑦 ∈ TopSp ↦ { 𝑓 ∈ ( ( Base ‘ 𝑥 ) Set⟶ ( Base ‘ 𝑦 ) ) ∣ ∀ 𝑢 ∈ ( TopOpen ‘ 𝑦 ) ( ◡ 𝑓 “ 𝑢 ) ∈ ( TopOpen ‘ 𝑥 ) } ) |