Step |
Hyp |
Ref |
Expression |
0 |
|
ctophom |
⊢ Top⟶ |
1 |
|
vx |
⊢ 𝑥 |
2 |
|
ctps |
⊢ TopSp |
3 |
|
vy |
⊢ 𝑦 |
4 |
|
vf |
⊢ 𝑓 |
5 |
|
cbs |
⊢ Base |
6 |
1
|
cv |
⊢ 𝑥 |
7 |
6 5
|
cfv |
⊢ ( Base ‘ 𝑥 ) |
8 |
|
csethom |
⊢ Set⟶ |
9 |
3
|
cv |
⊢ 𝑦 |
10 |
9 5
|
cfv |
⊢ ( Base ‘ 𝑦 ) |
11 |
7 10 8
|
co |
⊢ ( ( Base ‘ 𝑥 ) Set⟶ ( Base ‘ 𝑦 ) ) |
12 |
|
vu |
⊢ 𝑢 |
13 |
|
ctopn |
⊢ TopOpen |
14 |
9 13
|
cfv |
⊢ ( TopOpen ‘ 𝑦 ) |
15 |
4
|
cv |
⊢ 𝑓 |
16 |
15
|
ccnv |
⊢ ◡ 𝑓 |
17 |
12
|
cv |
⊢ 𝑢 |
18 |
16 17
|
cima |
⊢ ( ◡ 𝑓 “ 𝑢 ) |
19 |
6 13
|
cfv |
⊢ ( TopOpen ‘ 𝑥 ) |
20 |
18 19
|
wcel |
⊢ ( ◡ 𝑓 “ 𝑢 ) ∈ ( TopOpen ‘ 𝑥 ) |
21 |
20 12 14
|
wral |
⊢ ∀ 𝑢 ∈ ( TopOpen ‘ 𝑦 ) ( ◡ 𝑓 “ 𝑢 ) ∈ ( TopOpen ‘ 𝑥 ) |
22 |
21 4 11
|
crab |
⊢ { 𝑓 ∈ ( ( Base ‘ 𝑥 ) Set⟶ ( Base ‘ 𝑦 ) ) ∣ ∀ 𝑢 ∈ ( TopOpen ‘ 𝑦 ) ( ◡ 𝑓 “ 𝑢 ) ∈ ( TopOpen ‘ 𝑥 ) } |
23 |
1 3 2 2 22
|
cmpo |
⊢ ( 𝑥 ∈ TopSp , 𝑦 ∈ TopSp ↦ { 𝑓 ∈ ( ( Base ‘ 𝑥 ) Set⟶ ( Base ‘ 𝑦 ) ) ∣ ∀ 𝑢 ∈ ( TopOpen ‘ 𝑦 ) ( ◡ 𝑓 “ 𝑢 ) ∈ ( TopOpen ‘ 𝑥 ) } ) |
24 |
0 23
|
wceq |
⊢ Top⟶ = ( 𝑥 ∈ TopSp , 𝑦 ∈ TopSp ↦ { 𝑓 ∈ ( ( Base ‘ 𝑥 ) Set⟶ ( Base ‘ 𝑦 ) ) ∣ ∀ 𝑢 ∈ ( TopOpen ‘ 𝑦 ) ( ◡ 𝑓 “ 𝑢 ) ∈ ( TopOpen ‘ 𝑥 ) } ) |