Metamath Proof Explorer


Definition df-bnd

Description: Define the class of bounded metrics. A metric space is bounded iff it can be covered by a single ball. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion df-bnd Bnd=xVmMetx|yxr+x=yballmr

Detailed syntax breakdown

Step Hyp Ref Expression
0 cbnd classBnd
1 vx setvarx
2 cvv classV
3 vm setvarm
4 cmet classMet
5 1 cv setvarx
6 5 4 cfv classMetx
7 vy setvary
8 vr setvarr
9 crp class+
10 7 cv setvary
11 cbl classball
12 3 cv setvarm
13 12 11 cfv classballm
14 8 cv setvarr
15 10 14 13 co classyballmr
16 5 15 wceq wffx=yballmr
17 16 8 9 wrex wffr+x=yballmr
18 17 7 5 wral wffyxr+x=yballmr
19 18 3 6 crab classmMetx|yxr+x=yballmr
20 1 2 19 cmpt classxVmMetx|yxr+x=yballmr
21 0 20 wceq wffBnd=xVmMetx|yxr+x=yballmr