Metamath Proof Explorer


Definition df-docaN

Description: Define subspace orthocomplement for DVecA partial vector space. Temporarily, we are using the range of the isomorphism instead of the set of closed subspaces. Later, when inner product is introduced, we will show that these are the same. (Contributed by NM, 6-Dec-2013)

Ref Expression
Assertion df-docaN ocA = k V w LHyp k x 𝒫 LTrn k w DIsoA k w oc k DIsoA k w -1 z ran DIsoA k w | x z join k oc k w meet k w

Detailed syntax breakdown

Step Hyp Ref Expression
0 cocaN class ocA
1 vk setvar k
2 cvv class V
3 vw setvar w
4 clh class LHyp
5 1 cv setvar k
6 5 4 cfv class LHyp k
7 vx setvar x
8 cltrn class LTrn
9 5 8 cfv class LTrn k
10 3 cv setvar w
11 10 9 cfv class LTrn k w
12 11 cpw class 𝒫 LTrn k w
13 cdia class DIsoA
14 5 13 cfv class DIsoA k
15 10 14 cfv class DIsoA k w
16 coc class oc
17 5 16 cfv class oc k
18 15 ccnv class DIsoA k w -1
19 vz setvar z
20 15 crn class ran DIsoA k w
21 7 cv setvar x
22 19 cv setvar z
23 21 22 wss wff x z
24 23 19 20 crab class z ran DIsoA k w | x z
25 24 cint class z ran DIsoA k w | x z
26 25 18 cfv class DIsoA k w -1 z ran DIsoA k w | x z
27 26 17 cfv class oc k DIsoA k w -1 z ran DIsoA k w | x z
28 cjn class join
29 5 28 cfv class join k
30 10 17 cfv class oc k w
31 27 30 29 co class oc k DIsoA k w -1 z ran DIsoA k w | x z join k oc k w
32 cmee class meet
33 5 32 cfv class meet k
34 31 10 33 co class oc k DIsoA k w -1 z ran DIsoA k w | x z join k oc k w meet k w
35 34 15 cfv class DIsoA k w oc k DIsoA k w -1 z ran DIsoA k w | x z join k oc k w meet k w
36 7 12 35 cmpt class x 𝒫 LTrn k w DIsoA k w oc k DIsoA k w -1 z ran DIsoA k w | x z join k oc k w meet k w
37 3 6 36 cmpt class w LHyp k x 𝒫 LTrn k w DIsoA k w oc k DIsoA k w -1 z ran DIsoA k w | x z join k oc k w meet k w
38 1 2 37 cmpt class k V w LHyp k x 𝒫 LTrn k w DIsoA k w oc k DIsoA k w -1 z ran DIsoA k w | x z join k oc k w meet k w
39 0 38 wceq wff ocA = k V w LHyp k x 𝒫 LTrn k w DIsoA k w oc k DIsoA k w -1 z ran DIsoA k w | x z join k oc k w meet k w