Step |
Hyp |
Ref |
Expression |
0 |
|
cocaN |
|- ocA |
1 |
|
vk |
|- k |
2 |
|
cvv |
|- _V |
3 |
|
vw |
|- w |
4 |
|
clh |
|- LHyp |
5 |
1
|
cv |
|- k |
6 |
5 4
|
cfv |
|- ( LHyp ` k ) |
7 |
|
vx |
|- x |
8 |
|
cltrn |
|- LTrn |
9 |
5 8
|
cfv |
|- ( LTrn ` k ) |
10 |
3
|
cv |
|- w |
11 |
10 9
|
cfv |
|- ( ( LTrn ` k ) ` w ) |
12 |
11
|
cpw |
|- ~P ( ( LTrn ` k ) ` w ) |
13 |
|
cdia |
|- DIsoA |
14 |
5 13
|
cfv |
|- ( DIsoA ` k ) |
15 |
10 14
|
cfv |
|- ( ( DIsoA ` k ) ` w ) |
16 |
|
coc |
|- oc |
17 |
5 16
|
cfv |
|- ( oc ` k ) |
18 |
15
|
ccnv |
|- `' ( ( DIsoA ` k ) ` w ) |
19 |
|
vz |
|- z |
20 |
15
|
crn |
|- ran ( ( DIsoA ` k ) ` w ) |
21 |
7
|
cv |
|- x |
22 |
19
|
cv |
|- z |
23 |
21 22
|
wss |
|- x C_ z |
24 |
23 19 20
|
crab |
|- { z e. ran ( ( DIsoA ` k ) ` w ) | x C_ z } |
25 |
24
|
cint |
|- |^| { z e. ran ( ( DIsoA ` k ) ` w ) | x C_ z } |
26 |
25 18
|
cfv |
|- ( `' ( ( DIsoA ` k ) ` w ) ` |^| { z e. ran ( ( DIsoA ` k ) ` w ) | x C_ z } ) |
27 |
26 17
|
cfv |
|- ( ( oc ` k ) ` ( `' ( ( DIsoA ` k ) ` w ) ` |^| { z e. ran ( ( DIsoA ` k ) ` w ) | x C_ z } ) ) |
28 |
|
cjn |
|- join |
29 |
5 28
|
cfv |
|- ( join ` k ) |
30 |
10 17
|
cfv |
|- ( ( oc ` k ) ` w ) |
31 |
27 30 29
|
co |
|- ( ( ( oc ` k ) ` ( `' ( ( DIsoA ` k ) ` w ) ` |^| { z e. ran ( ( DIsoA ` k ) ` w ) | x C_ z } ) ) ( join ` k ) ( ( oc ` k ) ` w ) ) |
32 |
|
cmee |
|- meet |
33 |
5 32
|
cfv |
|- ( meet ` k ) |
34 |
31 10 33
|
co |
|- ( ( ( ( oc ` k ) ` ( `' ( ( DIsoA ` k ) ` w ) ` |^| { z e. ran ( ( DIsoA ` k ) ` w ) | x C_ z } ) ) ( join ` k ) ( ( oc ` k ) ` w ) ) ( meet ` k ) w ) |
35 |
34 15
|
cfv |
|- ( ( ( DIsoA ` k ) ` w ) ` ( ( ( ( oc ` k ) ` ( `' ( ( DIsoA ` k ) ` w ) ` |^| { z e. ran ( ( DIsoA ` k ) ` w ) | x C_ z } ) ) ( join ` k ) ( ( oc ` k ) ` w ) ) ( meet ` k ) w ) ) |
36 |
7 12 35
|
cmpt |
|- ( x e. ~P ( ( LTrn ` k ) ` w ) |-> ( ( ( DIsoA ` k ) ` w ) ` ( ( ( ( oc ` k ) ` ( `' ( ( DIsoA ` k ) ` w ) ` |^| { z e. ran ( ( DIsoA ` k ) ` w ) | x C_ z } ) ) ( join ` k ) ( ( oc ` k ) ` w ) ) ( meet ` k ) w ) ) ) |
37 |
3 6 36
|
cmpt |
|- ( w e. ( LHyp ` k ) |-> ( x e. ~P ( ( LTrn ` k ) ` w ) |-> ( ( ( DIsoA ` k ) ` w ) ` ( ( ( ( oc ` k ) ` ( `' ( ( DIsoA ` k ) ` w ) ` |^| { z e. ran ( ( DIsoA ` k ) ` w ) | x C_ z } ) ) ( join ` k ) ( ( oc ` k ) ` w ) ) ( meet ` k ) w ) ) ) ) |
38 |
1 2 37
|
cmpt |
|- ( k e. _V |-> ( w e. ( LHyp ` k ) |-> ( x e. ~P ( ( LTrn ` k ) ` w ) |-> ( ( ( DIsoA ` k ) ` w ) ` ( ( ( ( oc ` k ) ` ( `' ( ( DIsoA ` k ) ` w ) ` |^| { z e. ran ( ( DIsoA ` k ) ` w ) | x C_ z } ) ) ( join ` k ) ( ( oc ` k ) ` w ) ) ( meet ` k ) w ) ) ) ) ) |
39 |
0 38
|
wceq |
|- ocA = ( k e. _V |-> ( w e. ( LHyp ` k ) |-> ( x e. ~P ( ( LTrn ` k ) ` w ) |-> ( ( ( DIsoA ` k ) ` w ) ` ( ( ( ( oc ` k ) ` ( `' ( ( DIsoA ` k ) ` w ) ` |^| { z e. ran ( ( DIsoA ` k ) ` w ) | x C_ z } ) ) ( join ` k ) ( ( oc ` k ) ` w ) ) ( meet ` k ) w ) ) ) ) ) |