Metamath Proof Explorer


Definition df-docaN

Description: Define subspace orthocomplement for DVecA partial vector space. Temporarily, we are using the range of the isomorphism instead of the set of closed subspaces. Later, when inner product is introduced, we will show that these are the same. (Contributed by NM, 6-Dec-2013)

Ref Expression
Assertion df-docaN ocA=kVwLHypkx𝒫LTrnkwDIsoAkwockDIsoAkw-1zranDIsoAkw|xzjoinkockwmeetkw

Detailed syntax breakdown

Step Hyp Ref Expression
0 cocaN classocA
1 vk setvark
2 cvv classV
3 vw setvarw
4 clh classLHyp
5 1 cv setvark
6 5 4 cfv classLHypk
7 vx setvarx
8 cltrn classLTrn
9 5 8 cfv classLTrnk
10 3 cv setvarw
11 10 9 cfv classLTrnkw
12 11 cpw class𝒫LTrnkw
13 cdia classDIsoA
14 5 13 cfv classDIsoAk
15 10 14 cfv classDIsoAkw
16 coc classoc
17 5 16 cfv classock
18 15 ccnv classDIsoAkw-1
19 vz setvarz
20 15 crn classranDIsoAkw
21 7 cv setvarx
22 19 cv setvarz
23 21 22 wss wffxz
24 23 19 20 crab classzranDIsoAkw|xz
25 24 cint classzranDIsoAkw|xz
26 25 18 cfv classDIsoAkw-1zranDIsoAkw|xz
27 26 17 cfv classockDIsoAkw-1zranDIsoAkw|xz
28 cjn classjoin
29 5 28 cfv classjoink
30 10 17 cfv classockw
31 27 30 29 co classockDIsoAkw-1zranDIsoAkw|xzjoinkockw
32 cmee classmeet
33 5 32 cfv classmeetk
34 31 10 33 co classockDIsoAkw-1zranDIsoAkw|xzjoinkockwmeetkw
35 34 15 cfv classDIsoAkwockDIsoAkw-1zranDIsoAkw|xzjoinkockwmeetkw
36 7 12 35 cmpt classx𝒫LTrnkwDIsoAkwockDIsoAkw-1zranDIsoAkw|xzjoinkockwmeetkw
37 3 6 36 cmpt classwLHypkx𝒫LTrnkwDIsoAkwockDIsoAkw-1zranDIsoAkw|xzjoinkockwmeetkw
38 1 2 37 cmpt classkVwLHypkx𝒫LTrnkwDIsoAkwockDIsoAkw-1zranDIsoAkw|xzjoinkockwmeetkw
39 0 38 wceq wffocA=kVwLHypkx𝒫LTrnkwDIsoAkwockDIsoAkw-1zranDIsoAkw|xzjoinkockwmeetkw