Step |
Hyp |
Ref |
Expression |
1 |
|
docaval.j |
|- .\/ = ( join ` K ) |
2 |
|
docaval.m |
|- ./\ = ( meet ` K ) |
3 |
|
docaval.o |
|- ._|_ = ( oc ` K ) |
4 |
|
docaval.h |
|- H = ( LHyp ` K ) |
5 |
|
elex |
|- ( K e. V -> K e. _V ) |
6 |
|
fveq2 |
|- ( k = K -> ( LHyp ` k ) = ( LHyp ` K ) ) |
7 |
6 4
|
eqtr4di |
|- ( k = K -> ( LHyp ` k ) = H ) |
8 |
|
fveq2 |
|- ( k = K -> ( LTrn ` k ) = ( LTrn ` K ) ) |
9 |
8
|
fveq1d |
|- ( k = K -> ( ( LTrn ` k ) ` w ) = ( ( LTrn ` K ) ` w ) ) |
10 |
9
|
pweqd |
|- ( k = K -> ~P ( ( LTrn ` k ) ` w ) = ~P ( ( LTrn ` K ) ` w ) ) |
11 |
|
fveq2 |
|- ( k = K -> ( DIsoA ` k ) = ( DIsoA ` K ) ) |
12 |
11
|
fveq1d |
|- ( k = K -> ( ( DIsoA ` k ) ` w ) = ( ( DIsoA ` K ) ` w ) ) |
13 |
|
fveq2 |
|- ( k = K -> ( meet ` k ) = ( meet ` K ) ) |
14 |
13 2
|
eqtr4di |
|- ( k = K -> ( meet ` k ) = ./\ ) |
15 |
|
fveq2 |
|- ( k = K -> ( join ` k ) = ( join ` K ) ) |
16 |
15 1
|
eqtr4di |
|- ( k = K -> ( join ` k ) = .\/ ) |
17 |
|
fveq2 |
|- ( k = K -> ( oc ` k ) = ( oc ` K ) ) |
18 |
17 3
|
eqtr4di |
|- ( k = K -> ( oc ` k ) = ._|_ ) |
19 |
12
|
cnveqd |
|- ( k = K -> `' ( ( DIsoA ` k ) ` w ) = `' ( ( DIsoA ` K ) ` w ) ) |
20 |
12
|
rneqd |
|- ( k = K -> ran ( ( DIsoA ` k ) ` w ) = ran ( ( DIsoA ` K ) ` w ) ) |
21 |
20
|
rabeqdv |
|- ( k = K -> { z e. ran ( ( DIsoA ` k ) ` w ) | x C_ z } = { z e. ran ( ( DIsoA ` K ) ` w ) | x C_ z } ) |
22 |
21
|
inteqd |
|- ( k = K -> |^| { z e. ran ( ( DIsoA ` k ) ` w ) | x C_ z } = |^| { z e. ran ( ( DIsoA ` K ) ` w ) | x C_ z } ) |
23 |
19 22
|
fveq12d |
|- ( k = K -> ( `' ( ( DIsoA ` k ) ` w ) ` |^| { z e. ran ( ( DIsoA ` k ) ` w ) | x C_ z } ) = ( `' ( ( DIsoA ` K ) ` w ) ` |^| { z e. ran ( ( DIsoA ` K ) ` w ) | x C_ z } ) ) |
24 |
18 23
|
fveq12d |
|- ( k = K -> ( ( oc ` k ) ` ( `' ( ( DIsoA ` k ) ` w ) ` |^| { z e. ran ( ( DIsoA ` k ) ` w ) | x C_ z } ) ) = ( ._|_ ` ( `' ( ( DIsoA ` K ) ` w ) ` |^| { z e. ran ( ( DIsoA ` K ) ` w ) | x C_ z } ) ) ) |
25 |
18
|
fveq1d |
|- ( k = K -> ( ( oc ` k ) ` w ) = ( ._|_ ` w ) ) |
26 |
16 24 25
|
oveq123d |
|- ( k = K -> ( ( ( oc ` k ) ` ( `' ( ( DIsoA ` k ) ` w ) ` |^| { z e. ran ( ( DIsoA ` k ) ` w ) | x C_ z } ) ) ( join ` k ) ( ( oc ` k ) ` w ) ) = ( ( ._|_ ` ( `' ( ( DIsoA ` K ) ` w ) ` |^| { z e. ran ( ( DIsoA ` K ) ` w ) | x C_ z } ) ) .\/ ( ._|_ ` w ) ) ) |
27 |
|
eqidd |
|- ( k = K -> w = w ) |
28 |
14 26 27
|
oveq123d |
|- ( k = K -> ( ( ( ( oc ` k ) ` ( `' ( ( DIsoA ` k ) ` w ) ` |^| { z e. ran ( ( DIsoA ` k ) ` w ) | x C_ z } ) ) ( join ` k ) ( ( oc ` k ) ` w ) ) ( meet ` k ) w ) = ( ( ( ._|_ ` ( `' ( ( DIsoA ` K ) ` w ) ` |^| { z e. ran ( ( DIsoA ` K ) ` w ) | x C_ z } ) ) .\/ ( ._|_ ` w ) ) ./\ w ) ) |
29 |
12 28
|
fveq12d |
|- ( k = K -> ( ( ( DIsoA ` k ) ` w ) ` ( ( ( ( oc ` k ) ` ( `' ( ( DIsoA ` k ) ` w ) ` |^| { z e. ran ( ( DIsoA ` k ) ` w ) | x C_ z } ) ) ( join ` k ) ( ( oc ` k ) ` w ) ) ( meet ` k ) w ) ) = ( ( ( DIsoA ` K ) ` w ) ` ( ( ( ._|_ ` ( `' ( ( DIsoA ` K ) ` w ) ` |^| { z e. ran ( ( DIsoA ` K ) ` w ) | x C_ z } ) ) .\/ ( ._|_ ` w ) ) ./\ w ) ) ) |
30 |
10 29
|
mpteq12dv |
|- ( k = K -> ( x e. ~P ( ( LTrn ` k ) ` w ) |-> ( ( ( DIsoA ` k ) ` w ) ` ( ( ( ( oc ` k ) ` ( `' ( ( DIsoA ` k ) ` w ) ` |^| { z e. ran ( ( DIsoA ` k ) ` w ) | x C_ z } ) ) ( join ` k ) ( ( oc ` k ) ` w ) ) ( meet ` k ) w ) ) ) = ( x e. ~P ( ( LTrn ` K ) ` w ) |-> ( ( ( DIsoA ` K ) ` w ) ` ( ( ( ._|_ ` ( `' ( ( DIsoA ` K ) ` w ) ` |^| { z e. ran ( ( DIsoA ` K ) ` w ) | x C_ z } ) ) .\/ ( ._|_ ` w ) ) ./\ w ) ) ) ) |
31 |
7 30
|
mpteq12dv |
|- ( k = K -> ( w e. ( LHyp ` k ) |-> ( x e. ~P ( ( LTrn ` k ) ` w ) |-> ( ( ( DIsoA ` k ) ` w ) ` ( ( ( ( oc ` k ) ` ( `' ( ( DIsoA ` k ) ` w ) ` |^| { z e. ran ( ( DIsoA ` k ) ` w ) | x C_ z } ) ) ( join ` k ) ( ( oc ` k ) ` w ) ) ( meet ` k ) w ) ) ) ) = ( w e. H |-> ( x e. ~P ( ( LTrn ` K ) ` w ) |-> ( ( ( DIsoA ` K ) ` w ) ` ( ( ( ._|_ ` ( `' ( ( DIsoA ` K ) ` w ) ` |^| { z e. ran ( ( DIsoA ` K ) ` w ) | x C_ z } ) ) .\/ ( ._|_ ` w ) ) ./\ w ) ) ) ) ) |
32 |
|
df-docaN |
|- ocA = ( k e. _V |-> ( w e. ( LHyp ` k ) |-> ( x e. ~P ( ( LTrn ` k ) ` w ) |-> ( ( ( DIsoA ` k ) ` w ) ` ( ( ( ( oc ` k ) ` ( `' ( ( DIsoA ` k ) ` w ) ` |^| { z e. ran ( ( DIsoA ` k ) ` w ) | x C_ z } ) ) ( join ` k ) ( ( oc ` k ) ` w ) ) ( meet ` k ) w ) ) ) ) ) |
33 |
31 32 4
|
mptfvmpt |
|- ( K e. _V -> ( ocA ` K ) = ( w e. H |-> ( x e. ~P ( ( LTrn ` K ) ` w ) |-> ( ( ( DIsoA ` K ) ` w ) ` ( ( ( ._|_ ` ( `' ( ( DIsoA ` K ) ` w ) ` |^| { z e. ran ( ( DIsoA ` K ) ` w ) | x C_ z } ) ) .\/ ( ._|_ ` w ) ) ./\ w ) ) ) ) ) |
34 |
5 33
|
syl |
|- ( K e. V -> ( ocA ` K ) = ( w e. H |-> ( x e. ~P ( ( LTrn ` K ) ` w ) |-> ( ( ( DIsoA ` K ) ` w ) ` ( ( ( ._|_ ` ( `' ( ( DIsoA ` K ) ` w ) ` |^| { z e. ran ( ( DIsoA ` K ) ` w ) | x C_ z } ) ) .\/ ( ._|_ ` w ) ) ./\ w ) ) ) ) ) |