Step |
Hyp |
Ref |
Expression |
1 |
|
docaval.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
2 |
|
docaval.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
3 |
|
docaval.o |
⊢ ⊥ = ( oc ‘ 𝐾 ) |
4 |
|
docaval.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
5 |
|
elex |
⊢ ( 𝐾 ∈ 𝑉 → 𝐾 ∈ V ) |
6 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( LHyp ‘ 𝑘 ) = ( LHyp ‘ 𝐾 ) ) |
7 |
6 4
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( LHyp ‘ 𝑘 ) = 𝐻 ) |
8 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( LTrn ‘ 𝑘 ) = ( LTrn ‘ 𝐾 ) ) |
9 |
8
|
fveq1d |
⊢ ( 𝑘 = 𝐾 → ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ) |
10 |
9
|
pweqd |
⊢ ( 𝑘 = 𝐾 → 𝒫 ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) = 𝒫 ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ) |
11 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( DIsoA ‘ 𝑘 ) = ( DIsoA ‘ 𝐾 ) ) |
12 |
11
|
fveq1d |
⊢ ( 𝑘 = 𝐾 → ( ( DIsoA ‘ 𝑘 ) ‘ 𝑤 ) = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ) |
13 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( meet ‘ 𝑘 ) = ( meet ‘ 𝐾 ) ) |
14 |
13 2
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( meet ‘ 𝑘 ) = ∧ ) |
15 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( join ‘ 𝑘 ) = ( join ‘ 𝐾 ) ) |
16 |
15 1
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( join ‘ 𝑘 ) = ∨ ) |
17 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( oc ‘ 𝑘 ) = ( oc ‘ 𝐾 ) ) |
18 |
17 3
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( oc ‘ 𝑘 ) = ⊥ ) |
19 |
12
|
cnveqd |
⊢ ( 𝑘 = 𝐾 → ◡ ( ( DIsoA ‘ 𝑘 ) ‘ 𝑤 ) = ◡ ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ) |
20 |
12
|
rneqd |
⊢ ( 𝑘 = 𝐾 → ran ( ( DIsoA ‘ 𝑘 ) ‘ 𝑤 ) = ran ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ) |
21 |
20
|
rabeqdv |
⊢ ( 𝑘 = 𝐾 → { 𝑧 ∈ ran ( ( DIsoA ‘ 𝑘 ) ‘ 𝑤 ) ∣ 𝑥 ⊆ 𝑧 } = { 𝑧 ∈ ran ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ∣ 𝑥 ⊆ 𝑧 } ) |
22 |
21
|
inteqd |
⊢ ( 𝑘 = 𝐾 → ∩ { 𝑧 ∈ ran ( ( DIsoA ‘ 𝑘 ) ‘ 𝑤 ) ∣ 𝑥 ⊆ 𝑧 } = ∩ { 𝑧 ∈ ran ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ∣ 𝑥 ⊆ 𝑧 } ) |
23 |
19 22
|
fveq12d |
⊢ ( 𝑘 = 𝐾 → ( ◡ ( ( DIsoA ‘ 𝑘 ) ‘ 𝑤 ) ‘ ∩ { 𝑧 ∈ ran ( ( DIsoA ‘ 𝑘 ) ‘ 𝑤 ) ∣ 𝑥 ⊆ 𝑧 } ) = ( ◡ ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ∩ { 𝑧 ∈ ran ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ∣ 𝑥 ⊆ 𝑧 } ) ) |
24 |
18 23
|
fveq12d |
⊢ ( 𝑘 = 𝐾 → ( ( oc ‘ 𝑘 ) ‘ ( ◡ ( ( DIsoA ‘ 𝑘 ) ‘ 𝑤 ) ‘ ∩ { 𝑧 ∈ ran ( ( DIsoA ‘ 𝑘 ) ‘ 𝑤 ) ∣ 𝑥 ⊆ 𝑧 } ) ) = ( ⊥ ‘ ( ◡ ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ∩ { 𝑧 ∈ ran ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ∣ 𝑥 ⊆ 𝑧 } ) ) ) |
25 |
18
|
fveq1d |
⊢ ( 𝑘 = 𝐾 → ( ( oc ‘ 𝑘 ) ‘ 𝑤 ) = ( ⊥ ‘ 𝑤 ) ) |
26 |
16 24 25
|
oveq123d |
⊢ ( 𝑘 = 𝐾 → ( ( ( oc ‘ 𝑘 ) ‘ ( ◡ ( ( DIsoA ‘ 𝑘 ) ‘ 𝑤 ) ‘ ∩ { 𝑧 ∈ ran ( ( DIsoA ‘ 𝑘 ) ‘ 𝑤 ) ∣ 𝑥 ⊆ 𝑧 } ) ) ( join ‘ 𝑘 ) ( ( oc ‘ 𝑘 ) ‘ 𝑤 ) ) = ( ( ⊥ ‘ ( ◡ ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ∩ { 𝑧 ∈ ran ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ∣ 𝑥 ⊆ 𝑧 } ) ) ∨ ( ⊥ ‘ 𝑤 ) ) ) |
27 |
|
eqidd |
⊢ ( 𝑘 = 𝐾 → 𝑤 = 𝑤 ) |
28 |
14 26 27
|
oveq123d |
⊢ ( 𝑘 = 𝐾 → ( ( ( ( oc ‘ 𝑘 ) ‘ ( ◡ ( ( DIsoA ‘ 𝑘 ) ‘ 𝑤 ) ‘ ∩ { 𝑧 ∈ ran ( ( DIsoA ‘ 𝑘 ) ‘ 𝑤 ) ∣ 𝑥 ⊆ 𝑧 } ) ) ( join ‘ 𝑘 ) ( ( oc ‘ 𝑘 ) ‘ 𝑤 ) ) ( meet ‘ 𝑘 ) 𝑤 ) = ( ( ( ⊥ ‘ ( ◡ ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ∩ { 𝑧 ∈ ran ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ∣ 𝑥 ⊆ 𝑧 } ) ) ∨ ( ⊥ ‘ 𝑤 ) ) ∧ 𝑤 ) ) |
29 |
12 28
|
fveq12d |
⊢ ( 𝑘 = 𝐾 → ( ( ( DIsoA ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( ( ( ( oc ‘ 𝑘 ) ‘ ( ◡ ( ( DIsoA ‘ 𝑘 ) ‘ 𝑤 ) ‘ ∩ { 𝑧 ∈ ran ( ( DIsoA ‘ 𝑘 ) ‘ 𝑤 ) ∣ 𝑥 ⊆ 𝑧 } ) ) ( join ‘ 𝑘 ) ( ( oc ‘ 𝑘 ) ‘ 𝑤 ) ) ( meet ‘ 𝑘 ) 𝑤 ) ) = ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( ( ( ⊥ ‘ ( ◡ ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ∩ { 𝑧 ∈ ran ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ∣ 𝑥 ⊆ 𝑧 } ) ) ∨ ( ⊥ ‘ 𝑤 ) ) ∧ 𝑤 ) ) ) |
30 |
10 29
|
mpteq12dv |
⊢ ( 𝑘 = 𝐾 → ( 𝑥 ∈ 𝒫 ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ↦ ( ( ( DIsoA ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( ( ( ( oc ‘ 𝑘 ) ‘ ( ◡ ( ( DIsoA ‘ 𝑘 ) ‘ 𝑤 ) ‘ ∩ { 𝑧 ∈ ran ( ( DIsoA ‘ 𝑘 ) ‘ 𝑤 ) ∣ 𝑥 ⊆ 𝑧 } ) ) ( join ‘ 𝑘 ) ( ( oc ‘ 𝑘 ) ‘ 𝑤 ) ) ( meet ‘ 𝑘 ) 𝑤 ) ) ) = ( 𝑥 ∈ 𝒫 ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( ( ( ⊥ ‘ ( ◡ ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ∩ { 𝑧 ∈ ran ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ∣ 𝑥 ⊆ 𝑧 } ) ) ∨ ( ⊥ ‘ 𝑤 ) ) ∧ 𝑤 ) ) ) ) |
31 |
7 30
|
mpteq12dv |
⊢ ( 𝑘 = 𝐾 → ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ ( 𝑥 ∈ 𝒫 ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ↦ ( ( ( DIsoA ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( ( ( ( oc ‘ 𝑘 ) ‘ ( ◡ ( ( DIsoA ‘ 𝑘 ) ‘ 𝑤 ) ‘ ∩ { 𝑧 ∈ ran ( ( DIsoA ‘ 𝑘 ) ‘ 𝑤 ) ∣ 𝑥 ⊆ 𝑧 } ) ) ( join ‘ 𝑘 ) ( ( oc ‘ 𝑘 ) ‘ 𝑤 ) ) ( meet ‘ 𝑘 ) 𝑤 ) ) ) ) = ( 𝑤 ∈ 𝐻 ↦ ( 𝑥 ∈ 𝒫 ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( ( ( ⊥ ‘ ( ◡ ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ∩ { 𝑧 ∈ ran ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ∣ 𝑥 ⊆ 𝑧 } ) ) ∨ ( ⊥ ‘ 𝑤 ) ) ∧ 𝑤 ) ) ) ) ) |
32 |
|
df-docaN |
⊢ ocA = ( 𝑘 ∈ V ↦ ( 𝑤 ∈ ( LHyp ‘ 𝑘 ) ↦ ( 𝑥 ∈ 𝒫 ( ( LTrn ‘ 𝑘 ) ‘ 𝑤 ) ↦ ( ( ( DIsoA ‘ 𝑘 ) ‘ 𝑤 ) ‘ ( ( ( ( oc ‘ 𝑘 ) ‘ ( ◡ ( ( DIsoA ‘ 𝑘 ) ‘ 𝑤 ) ‘ ∩ { 𝑧 ∈ ran ( ( DIsoA ‘ 𝑘 ) ‘ 𝑤 ) ∣ 𝑥 ⊆ 𝑧 } ) ) ( join ‘ 𝑘 ) ( ( oc ‘ 𝑘 ) ‘ 𝑤 ) ) ( meet ‘ 𝑘 ) 𝑤 ) ) ) ) ) |
33 |
31 32 4
|
mptfvmpt |
⊢ ( 𝐾 ∈ V → ( ocA ‘ 𝐾 ) = ( 𝑤 ∈ 𝐻 ↦ ( 𝑥 ∈ 𝒫 ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( ( ( ⊥ ‘ ( ◡ ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ∩ { 𝑧 ∈ ran ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ∣ 𝑥 ⊆ 𝑧 } ) ) ∨ ( ⊥ ‘ 𝑤 ) ) ∧ 𝑤 ) ) ) ) ) |
34 |
5 33
|
syl |
⊢ ( 𝐾 ∈ 𝑉 → ( ocA ‘ 𝐾 ) = ( 𝑤 ∈ 𝐻 ↦ ( 𝑥 ∈ 𝒫 ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( ( ( ⊥ ‘ ( ◡ ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ∩ { 𝑧 ∈ ran ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ∣ 𝑥 ⊆ 𝑧 } ) ) ∨ ( ⊥ ‘ 𝑤 ) ) ∧ 𝑤 ) ) ) ) ) |