Step |
Hyp |
Ref |
Expression |
1 |
|
docaval.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
2 |
|
docaval.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
3 |
|
docaval.o |
⊢ ⊥ = ( oc ‘ 𝐾 ) |
4 |
|
docaval.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
5 |
|
docaval.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
docaval.i |
⊢ 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
docaval.n |
⊢ 𝑁 = ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
1 2 3 4
|
docaffvalN |
⊢ ( 𝐾 ∈ 𝑉 → ( ocA ‘ 𝐾 ) = ( 𝑤 ∈ 𝐻 ↦ ( 𝑥 ∈ 𝒫 ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( ( ( ⊥ ‘ ( ◡ ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ∩ { 𝑧 ∈ ran ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ∣ 𝑥 ⊆ 𝑧 } ) ) ∨ ( ⊥ ‘ 𝑤 ) ) ∧ 𝑤 ) ) ) ) ) |
9 |
8
|
fveq1d |
⊢ ( 𝐾 ∈ 𝑉 → ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) = ( ( 𝑤 ∈ 𝐻 ↦ ( 𝑥 ∈ 𝒫 ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( ( ( ⊥ ‘ ( ◡ ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ∩ { 𝑧 ∈ ran ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ∣ 𝑥 ⊆ 𝑧 } ) ) ∨ ( ⊥ ‘ 𝑤 ) ) ∧ 𝑤 ) ) ) ) ‘ 𝑊 ) ) |
10 |
7 9
|
syl5eq |
⊢ ( 𝐾 ∈ 𝑉 → 𝑁 = ( ( 𝑤 ∈ 𝐻 ↦ ( 𝑥 ∈ 𝒫 ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( ( ( ⊥ ‘ ( ◡ ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ∩ { 𝑧 ∈ ran ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ∣ 𝑥 ⊆ 𝑧 } ) ) ∨ ( ⊥ ‘ 𝑤 ) ) ∧ 𝑤 ) ) ) ) ‘ 𝑊 ) ) |
11 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) ) |
12 |
11 5
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) = 𝑇 ) |
13 |
12
|
pweqd |
⊢ ( 𝑤 = 𝑊 → 𝒫 ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) = 𝒫 𝑇 ) |
14 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) ) |
15 |
14 6
|
eqtr4di |
⊢ ( 𝑤 = 𝑊 → ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) = 𝐼 ) |
16 |
15
|
cnveqd |
⊢ ( 𝑤 = 𝑊 → ◡ ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) = ◡ 𝐼 ) |
17 |
15
|
rneqd |
⊢ ( 𝑤 = 𝑊 → ran ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) = ran 𝐼 ) |
18 |
17
|
rabeqdv |
⊢ ( 𝑤 = 𝑊 → { 𝑧 ∈ ran ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ∣ 𝑥 ⊆ 𝑧 } = { 𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧 } ) |
19 |
18
|
inteqd |
⊢ ( 𝑤 = 𝑊 → ∩ { 𝑧 ∈ ran ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ∣ 𝑥 ⊆ 𝑧 } = ∩ { 𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧 } ) |
20 |
16 19
|
fveq12d |
⊢ ( 𝑤 = 𝑊 → ( ◡ ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ∩ { 𝑧 ∈ ran ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ∣ 𝑥 ⊆ 𝑧 } ) = ( ◡ 𝐼 ‘ ∩ { 𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧 } ) ) |
21 |
20
|
fveq2d |
⊢ ( 𝑤 = 𝑊 → ( ⊥ ‘ ( ◡ ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ∩ { 𝑧 ∈ ran ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ∣ 𝑥 ⊆ 𝑧 } ) ) = ( ⊥ ‘ ( ◡ 𝐼 ‘ ∩ { 𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧 } ) ) ) |
22 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( ⊥ ‘ 𝑤 ) = ( ⊥ ‘ 𝑊 ) ) |
23 |
21 22
|
oveq12d |
⊢ ( 𝑤 = 𝑊 → ( ( ⊥ ‘ ( ◡ ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ∩ { 𝑧 ∈ ran ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ∣ 𝑥 ⊆ 𝑧 } ) ) ∨ ( ⊥ ‘ 𝑤 ) ) = ( ( ⊥ ‘ ( ◡ 𝐼 ‘ ∩ { 𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧 } ) ) ∨ ( ⊥ ‘ 𝑊 ) ) ) |
24 |
|
id |
⊢ ( 𝑤 = 𝑊 → 𝑤 = 𝑊 ) |
25 |
23 24
|
oveq12d |
⊢ ( 𝑤 = 𝑊 → ( ( ( ⊥ ‘ ( ◡ ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ∩ { 𝑧 ∈ ran ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ∣ 𝑥 ⊆ 𝑧 } ) ) ∨ ( ⊥ ‘ 𝑤 ) ) ∧ 𝑤 ) = ( ( ( ⊥ ‘ ( ◡ 𝐼 ‘ ∩ { 𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧 } ) ) ∨ ( ⊥ ‘ 𝑊 ) ) ∧ 𝑊 ) ) |
26 |
15 25
|
fveq12d |
⊢ ( 𝑤 = 𝑊 → ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( ( ( ⊥ ‘ ( ◡ ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ∩ { 𝑧 ∈ ran ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ∣ 𝑥 ⊆ 𝑧 } ) ) ∨ ( ⊥ ‘ 𝑤 ) ) ∧ 𝑤 ) ) = ( 𝐼 ‘ ( ( ( ⊥ ‘ ( ◡ 𝐼 ‘ ∩ { 𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧 } ) ) ∨ ( ⊥ ‘ 𝑊 ) ) ∧ 𝑊 ) ) ) |
27 |
13 26
|
mpteq12dv |
⊢ ( 𝑤 = 𝑊 → ( 𝑥 ∈ 𝒫 ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( ( ( ⊥ ‘ ( ◡ ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ∩ { 𝑧 ∈ ran ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ∣ 𝑥 ⊆ 𝑧 } ) ) ∨ ( ⊥ ‘ 𝑤 ) ) ∧ 𝑤 ) ) ) = ( 𝑥 ∈ 𝒫 𝑇 ↦ ( 𝐼 ‘ ( ( ( ⊥ ‘ ( ◡ 𝐼 ‘ ∩ { 𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧 } ) ) ∨ ( ⊥ ‘ 𝑊 ) ) ∧ 𝑊 ) ) ) ) |
28 |
|
eqid |
⊢ ( 𝑤 ∈ 𝐻 ↦ ( 𝑥 ∈ 𝒫 ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( ( ( ⊥ ‘ ( ◡ ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ∩ { 𝑧 ∈ ran ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ∣ 𝑥 ⊆ 𝑧 } ) ) ∨ ( ⊥ ‘ 𝑤 ) ) ∧ 𝑤 ) ) ) ) = ( 𝑤 ∈ 𝐻 ↦ ( 𝑥 ∈ 𝒫 ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( ( ( ⊥ ‘ ( ◡ ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ∩ { 𝑧 ∈ ran ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ∣ 𝑥 ⊆ 𝑧 } ) ) ∨ ( ⊥ ‘ 𝑤 ) ) ∧ 𝑤 ) ) ) ) |
29 |
5
|
fvexi |
⊢ 𝑇 ∈ V |
30 |
29
|
pwex |
⊢ 𝒫 𝑇 ∈ V |
31 |
30
|
mptex |
⊢ ( 𝑥 ∈ 𝒫 𝑇 ↦ ( 𝐼 ‘ ( ( ( ⊥ ‘ ( ◡ 𝐼 ‘ ∩ { 𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧 } ) ) ∨ ( ⊥ ‘ 𝑊 ) ) ∧ 𝑊 ) ) ) ∈ V |
32 |
27 28 31
|
fvmpt |
⊢ ( 𝑊 ∈ 𝐻 → ( ( 𝑤 ∈ 𝐻 ↦ ( 𝑥 ∈ 𝒫 ( ( LTrn ‘ 𝐾 ) ‘ 𝑤 ) ↦ ( ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ( ( ( ⊥ ‘ ( ◡ ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ‘ ∩ { 𝑧 ∈ ran ( ( DIsoA ‘ 𝐾 ) ‘ 𝑤 ) ∣ 𝑥 ⊆ 𝑧 } ) ) ∨ ( ⊥ ‘ 𝑤 ) ) ∧ 𝑤 ) ) ) ) ‘ 𝑊 ) = ( 𝑥 ∈ 𝒫 𝑇 ↦ ( 𝐼 ‘ ( ( ( ⊥ ‘ ( ◡ 𝐼 ‘ ∩ { 𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧 } ) ) ∨ ( ⊥ ‘ 𝑊 ) ) ∧ 𝑊 ) ) ) ) |
33 |
10 32
|
sylan9eq |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ) → 𝑁 = ( 𝑥 ∈ 𝒫 𝑇 ↦ ( 𝐼 ‘ ( ( ( ⊥ ‘ ( ◡ 𝐼 ‘ ∩ { 𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧 } ) ) ∨ ( ⊥ ‘ 𝑊 ) ) ∧ 𝑊 ) ) ) ) |