Step |
Hyp |
Ref |
Expression |
1 |
|
docaval.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
2 |
|
docaval.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
3 |
|
docaval.o |
⊢ ⊥ = ( oc ‘ 𝐾 ) |
4 |
|
docaval.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
5 |
|
docaval.t |
⊢ 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 ) |
6 |
|
docaval.i |
⊢ 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 ) |
7 |
|
docaval.n |
⊢ 𝑁 = ( ( ocA ‘ 𝐾 ) ‘ 𝑊 ) |
8 |
1 2 3 4 5 6 7
|
docafvalN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) → 𝑁 = ( 𝑥 ∈ 𝒫 𝑇 ↦ ( 𝐼 ‘ ( ( ( ⊥ ‘ ( ◡ 𝐼 ‘ ∩ { 𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧 } ) ) ∨ ( ⊥ ‘ 𝑊 ) ) ∧ 𝑊 ) ) ) ) |
9 |
8
|
adantr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑇 ) → 𝑁 = ( 𝑥 ∈ 𝒫 𝑇 ↦ ( 𝐼 ‘ ( ( ( ⊥ ‘ ( ◡ 𝐼 ‘ ∩ { 𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧 } ) ) ∨ ( ⊥ ‘ 𝑊 ) ) ∧ 𝑊 ) ) ) ) |
10 |
9
|
fveq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑇 ) → ( 𝑁 ‘ 𝑋 ) = ( ( 𝑥 ∈ 𝒫 𝑇 ↦ ( 𝐼 ‘ ( ( ( ⊥ ‘ ( ◡ 𝐼 ‘ ∩ { 𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧 } ) ) ∨ ( ⊥ ‘ 𝑊 ) ) ∧ 𝑊 ) ) ) ‘ 𝑋 ) ) |
11 |
5
|
fvexi |
⊢ 𝑇 ∈ V |
12 |
11
|
elpw2 |
⊢ ( 𝑋 ∈ 𝒫 𝑇 ↔ 𝑋 ⊆ 𝑇 ) |
13 |
12
|
biimpri |
⊢ ( 𝑋 ⊆ 𝑇 → 𝑋 ∈ 𝒫 𝑇 ) |
14 |
13
|
adantl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑇 ) → 𝑋 ∈ 𝒫 𝑇 ) |
15 |
|
fvex |
⊢ ( 𝐼 ‘ ( ( ( ⊥ ‘ ( ◡ 𝐼 ‘ ∩ { 𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧 } ) ) ∨ ( ⊥ ‘ 𝑊 ) ) ∧ 𝑊 ) ) ∈ V |
16 |
|
sseq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ⊆ 𝑧 ↔ 𝑋 ⊆ 𝑧 ) ) |
17 |
16
|
rabbidv |
⊢ ( 𝑥 = 𝑋 → { 𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧 } = { 𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧 } ) |
18 |
17
|
inteqd |
⊢ ( 𝑥 = 𝑋 → ∩ { 𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧 } = ∩ { 𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧 } ) |
19 |
18
|
fveq2d |
⊢ ( 𝑥 = 𝑋 → ( ◡ 𝐼 ‘ ∩ { 𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧 } ) = ( ◡ 𝐼 ‘ ∩ { 𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧 } ) ) |
20 |
19
|
fveq2d |
⊢ ( 𝑥 = 𝑋 → ( ⊥ ‘ ( ◡ 𝐼 ‘ ∩ { 𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧 } ) ) = ( ⊥ ‘ ( ◡ 𝐼 ‘ ∩ { 𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧 } ) ) ) |
21 |
20
|
oveq1d |
⊢ ( 𝑥 = 𝑋 → ( ( ⊥ ‘ ( ◡ 𝐼 ‘ ∩ { 𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧 } ) ) ∨ ( ⊥ ‘ 𝑊 ) ) = ( ( ⊥ ‘ ( ◡ 𝐼 ‘ ∩ { 𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧 } ) ) ∨ ( ⊥ ‘ 𝑊 ) ) ) |
22 |
21
|
fvoveq1d |
⊢ ( 𝑥 = 𝑋 → ( 𝐼 ‘ ( ( ( ⊥ ‘ ( ◡ 𝐼 ‘ ∩ { 𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧 } ) ) ∨ ( ⊥ ‘ 𝑊 ) ) ∧ 𝑊 ) ) = ( 𝐼 ‘ ( ( ( ⊥ ‘ ( ◡ 𝐼 ‘ ∩ { 𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧 } ) ) ∨ ( ⊥ ‘ 𝑊 ) ) ∧ 𝑊 ) ) ) |
23 |
|
eqid |
⊢ ( 𝑥 ∈ 𝒫 𝑇 ↦ ( 𝐼 ‘ ( ( ( ⊥ ‘ ( ◡ 𝐼 ‘ ∩ { 𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧 } ) ) ∨ ( ⊥ ‘ 𝑊 ) ) ∧ 𝑊 ) ) ) = ( 𝑥 ∈ 𝒫 𝑇 ↦ ( 𝐼 ‘ ( ( ( ⊥ ‘ ( ◡ 𝐼 ‘ ∩ { 𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧 } ) ) ∨ ( ⊥ ‘ 𝑊 ) ) ∧ 𝑊 ) ) ) |
24 |
22 23
|
fvmptg |
⊢ ( ( 𝑋 ∈ 𝒫 𝑇 ∧ ( 𝐼 ‘ ( ( ( ⊥ ‘ ( ◡ 𝐼 ‘ ∩ { 𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧 } ) ) ∨ ( ⊥ ‘ 𝑊 ) ) ∧ 𝑊 ) ) ∈ V ) → ( ( 𝑥 ∈ 𝒫 𝑇 ↦ ( 𝐼 ‘ ( ( ( ⊥ ‘ ( ◡ 𝐼 ‘ ∩ { 𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧 } ) ) ∨ ( ⊥ ‘ 𝑊 ) ) ∧ 𝑊 ) ) ) ‘ 𝑋 ) = ( 𝐼 ‘ ( ( ( ⊥ ‘ ( ◡ 𝐼 ‘ ∩ { 𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧 } ) ) ∨ ( ⊥ ‘ 𝑊 ) ) ∧ 𝑊 ) ) ) |
25 |
14 15 24
|
sylancl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑇 ) → ( ( 𝑥 ∈ 𝒫 𝑇 ↦ ( 𝐼 ‘ ( ( ( ⊥ ‘ ( ◡ 𝐼 ‘ ∩ { 𝑧 ∈ ran 𝐼 ∣ 𝑥 ⊆ 𝑧 } ) ) ∨ ( ⊥ ‘ 𝑊 ) ) ∧ 𝑊 ) ) ) ‘ 𝑋 ) = ( 𝐼 ‘ ( ( ( ⊥ ‘ ( ◡ 𝐼 ‘ ∩ { 𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧 } ) ) ∨ ( ⊥ ‘ 𝑊 ) ) ∧ 𝑊 ) ) ) |
26 |
10 25
|
eqtrd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ 𝑋 ⊆ 𝑇 ) → ( 𝑁 ‘ 𝑋 ) = ( 𝐼 ‘ ( ( ( ⊥ ‘ ( ◡ 𝐼 ‘ ∩ { 𝑧 ∈ ran 𝐼 ∣ 𝑋 ⊆ 𝑧 } ) ) ∨ ( ⊥ ‘ 𝑊 ) ) ∧ 𝑊 ) ) ) |