Metamath Proof Explorer


Theorem docavalN

Description: Subspace orthocomplement for DVecA partial vector space. (Contributed by NM, 6-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses docaval.j = ( join ‘ 𝐾 )
docaval.m = ( meet ‘ 𝐾 )
docaval.o = ( oc ‘ 𝐾 )
docaval.h 𝐻 = ( LHyp ‘ 𝐾 )
docaval.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
docaval.i 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 )
docaval.n 𝑁 = ( ( ocA ‘ 𝐾 ) ‘ 𝑊 )
Assertion docavalN ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝑇 ) → ( 𝑁𝑋 ) = ( 𝐼 ‘ ( ( ( ‘ ( 𝐼 { 𝑧 ∈ ran 𝐼𝑋𝑧 } ) ) ( 𝑊 ) ) 𝑊 ) ) )

Proof

Step Hyp Ref Expression
1 docaval.j = ( join ‘ 𝐾 )
2 docaval.m = ( meet ‘ 𝐾 )
3 docaval.o = ( oc ‘ 𝐾 )
4 docaval.h 𝐻 = ( LHyp ‘ 𝐾 )
5 docaval.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
6 docaval.i 𝐼 = ( ( DIsoA ‘ 𝐾 ) ‘ 𝑊 )
7 docaval.n 𝑁 = ( ( ocA ‘ 𝐾 ) ‘ 𝑊 )
8 1 2 3 4 5 6 7 docafvalN ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) → 𝑁 = ( 𝑥 ∈ 𝒫 𝑇 ↦ ( 𝐼 ‘ ( ( ( ‘ ( 𝐼 { 𝑧 ∈ ran 𝐼𝑥𝑧 } ) ) ( 𝑊 ) ) 𝑊 ) ) ) )
9 8 adantr ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝑇 ) → 𝑁 = ( 𝑥 ∈ 𝒫 𝑇 ↦ ( 𝐼 ‘ ( ( ( ‘ ( 𝐼 { 𝑧 ∈ ran 𝐼𝑥𝑧 } ) ) ( 𝑊 ) ) 𝑊 ) ) ) )
10 9 fveq1d ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝑇 ) → ( 𝑁𝑋 ) = ( ( 𝑥 ∈ 𝒫 𝑇 ↦ ( 𝐼 ‘ ( ( ( ‘ ( 𝐼 { 𝑧 ∈ ran 𝐼𝑥𝑧 } ) ) ( 𝑊 ) ) 𝑊 ) ) ) ‘ 𝑋 ) )
11 5 fvexi 𝑇 ∈ V
12 11 elpw2 ( 𝑋 ∈ 𝒫 𝑇𝑋𝑇 )
13 12 biimpri ( 𝑋𝑇𝑋 ∈ 𝒫 𝑇 )
14 13 adantl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝑇 ) → 𝑋 ∈ 𝒫 𝑇 )
15 fvex ( 𝐼 ‘ ( ( ( ‘ ( 𝐼 { 𝑧 ∈ ran 𝐼𝑋𝑧 } ) ) ( 𝑊 ) ) 𝑊 ) ) ∈ V
16 sseq1 ( 𝑥 = 𝑋 → ( 𝑥𝑧𝑋𝑧 ) )
17 16 rabbidv ( 𝑥 = 𝑋 → { 𝑧 ∈ ran 𝐼𝑥𝑧 } = { 𝑧 ∈ ran 𝐼𝑋𝑧 } )
18 17 inteqd ( 𝑥 = 𝑋 { 𝑧 ∈ ran 𝐼𝑥𝑧 } = { 𝑧 ∈ ran 𝐼𝑋𝑧 } )
19 18 fveq2d ( 𝑥 = 𝑋 → ( 𝐼 { 𝑧 ∈ ran 𝐼𝑥𝑧 } ) = ( 𝐼 { 𝑧 ∈ ran 𝐼𝑋𝑧 } ) )
20 19 fveq2d ( 𝑥 = 𝑋 → ( ‘ ( 𝐼 { 𝑧 ∈ ran 𝐼𝑥𝑧 } ) ) = ( ‘ ( 𝐼 { 𝑧 ∈ ran 𝐼𝑋𝑧 } ) ) )
21 20 oveq1d ( 𝑥 = 𝑋 → ( ( ‘ ( 𝐼 { 𝑧 ∈ ran 𝐼𝑥𝑧 } ) ) ( 𝑊 ) ) = ( ( ‘ ( 𝐼 { 𝑧 ∈ ran 𝐼𝑋𝑧 } ) ) ( 𝑊 ) ) )
22 21 fvoveq1d ( 𝑥 = 𝑋 → ( 𝐼 ‘ ( ( ( ‘ ( 𝐼 { 𝑧 ∈ ran 𝐼𝑥𝑧 } ) ) ( 𝑊 ) ) 𝑊 ) ) = ( 𝐼 ‘ ( ( ( ‘ ( 𝐼 { 𝑧 ∈ ran 𝐼𝑋𝑧 } ) ) ( 𝑊 ) ) 𝑊 ) ) )
23 eqid ( 𝑥 ∈ 𝒫 𝑇 ↦ ( 𝐼 ‘ ( ( ( ‘ ( 𝐼 { 𝑧 ∈ ran 𝐼𝑥𝑧 } ) ) ( 𝑊 ) ) 𝑊 ) ) ) = ( 𝑥 ∈ 𝒫 𝑇 ↦ ( 𝐼 ‘ ( ( ( ‘ ( 𝐼 { 𝑧 ∈ ran 𝐼𝑥𝑧 } ) ) ( 𝑊 ) ) 𝑊 ) ) )
24 22 23 fvmptg ( ( 𝑋 ∈ 𝒫 𝑇 ∧ ( 𝐼 ‘ ( ( ( ‘ ( 𝐼 { 𝑧 ∈ ran 𝐼𝑋𝑧 } ) ) ( 𝑊 ) ) 𝑊 ) ) ∈ V ) → ( ( 𝑥 ∈ 𝒫 𝑇 ↦ ( 𝐼 ‘ ( ( ( ‘ ( 𝐼 { 𝑧 ∈ ran 𝐼𝑥𝑧 } ) ) ( 𝑊 ) ) 𝑊 ) ) ) ‘ 𝑋 ) = ( 𝐼 ‘ ( ( ( ‘ ( 𝐼 { 𝑧 ∈ ran 𝐼𝑋𝑧 } ) ) ( 𝑊 ) ) 𝑊 ) ) )
25 14 15 24 sylancl ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝑇 ) → ( ( 𝑥 ∈ 𝒫 𝑇 ↦ ( 𝐼 ‘ ( ( ( ‘ ( 𝐼 { 𝑧 ∈ ran 𝐼𝑥𝑧 } ) ) ( 𝑊 ) ) 𝑊 ) ) ) ‘ 𝑋 ) = ( 𝐼 ‘ ( ( ( ‘ ( 𝐼 { 𝑧 ∈ ran 𝐼𝑋𝑧 } ) ) ( 𝑊 ) ) 𝑊 ) ) )
26 10 25 eqtrd ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑋𝑇 ) → ( 𝑁𝑋 ) = ( 𝐼 ‘ ( ( ( ‘ ( 𝐼 { 𝑧 ∈ ran 𝐼𝑋𝑧 } ) ) ( 𝑊 ) ) 𝑊 ) ) )