Metamath Proof Explorer


Theorem docafvalN

Description: Subspace orthocomplement for DVecA partial vector space. (Contributed by NM, 6-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses docaval.j ˙=joinK
docaval.m ˙=meetK
docaval.o ˙=ocK
docaval.h H=LHypK
docaval.t T=LTrnKW
docaval.i I=DIsoAKW
docaval.n N=ocAKW
Assertion docafvalN KVWHN=x𝒫TI˙I-1zranI|xz˙˙W˙W

Proof

Step Hyp Ref Expression
1 docaval.j ˙=joinK
2 docaval.m ˙=meetK
3 docaval.o ˙=ocK
4 docaval.h H=LHypK
5 docaval.t T=LTrnKW
6 docaval.i I=DIsoAKW
7 docaval.n N=ocAKW
8 1 2 3 4 docaffvalN KVocAK=wHx𝒫LTrnKwDIsoAKw˙DIsoAKw-1zranDIsoAKw|xz˙˙w˙w
9 8 fveq1d KVocAKW=wHx𝒫LTrnKwDIsoAKw˙DIsoAKw-1zranDIsoAKw|xz˙˙w˙wW
10 7 9 eqtrid KVN=wHx𝒫LTrnKwDIsoAKw˙DIsoAKw-1zranDIsoAKw|xz˙˙w˙wW
11 fveq2 w=WLTrnKw=LTrnKW
12 11 5 eqtr4di w=WLTrnKw=T
13 12 pweqd w=W𝒫LTrnKw=𝒫T
14 fveq2 w=WDIsoAKw=DIsoAKW
15 14 6 eqtr4di w=WDIsoAKw=I
16 15 cnveqd w=WDIsoAKw-1=I-1
17 15 rneqd w=WranDIsoAKw=ranI
18 17 rabeqdv w=WzranDIsoAKw|xz=zranI|xz
19 18 inteqd w=WzranDIsoAKw|xz=zranI|xz
20 16 19 fveq12d w=WDIsoAKw-1zranDIsoAKw|xz=I-1zranI|xz
21 20 fveq2d w=W˙DIsoAKw-1zranDIsoAKw|xz=˙I-1zranI|xz
22 fveq2 w=W˙w=˙W
23 21 22 oveq12d w=W˙DIsoAKw-1zranDIsoAKw|xz˙˙w=˙I-1zranI|xz˙˙W
24 id w=Ww=W
25 23 24 oveq12d w=W˙DIsoAKw-1zranDIsoAKw|xz˙˙w˙w=˙I-1zranI|xz˙˙W˙W
26 15 25 fveq12d w=WDIsoAKw˙DIsoAKw-1zranDIsoAKw|xz˙˙w˙w=I˙I-1zranI|xz˙˙W˙W
27 13 26 mpteq12dv w=Wx𝒫LTrnKwDIsoAKw˙DIsoAKw-1zranDIsoAKw|xz˙˙w˙w=x𝒫TI˙I-1zranI|xz˙˙W˙W
28 eqid wHx𝒫LTrnKwDIsoAKw˙DIsoAKw-1zranDIsoAKw|xz˙˙w˙w=wHx𝒫LTrnKwDIsoAKw˙DIsoAKw-1zranDIsoAKw|xz˙˙w˙w
29 5 fvexi TV
30 29 pwex 𝒫TV
31 30 mptex x𝒫TI˙I-1zranI|xz˙˙W˙WV
32 27 28 31 fvmpt WHwHx𝒫LTrnKwDIsoAKw˙DIsoAKw-1zranDIsoAKw|xz˙˙w˙wW=x𝒫TI˙I-1zranI|xz˙˙W˙W
33 10 32 sylan9eq KVWHN=x𝒫TI˙I-1zranI|xz˙˙W˙W