Metamath Proof Explorer


Definition df-edring-rN

Description: Define division ring on trace-preserving endomorphisms. Definition of E of Crawley p. 117, 4th line from bottom. (Contributed by NM, 8-Jun-2013)

Ref Expression
Assertion df-edring-rN EDRingR=kVwLHypkBasendxTEndokw+ndxsTEndokw,tTEndokwfLTrnkwsftfndxsTEndokw,tTEndokwts

Detailed syntax breakdown

Step Hyp Ref Expression
0 cedring-rN classEDRingR
1 vk setvark
2 cvv classV
3 vw setvarw
4 clh classLHyp
5 1 cv setvark
6 5 4 cfv classLHypk
7 cbs classBase
8 cnx classndx
9 8 7 cfv classBasendx
10 ctendo classTEndo
11 5 10 cfv classTEndok
12 3 cv setvarw
13 12 11 cfv classTEndokw
14 9 13 cop classBasendxTEndokw
15 cplusg class+𝑔
16 8 15 cfv class+ndx
17 vs setvars
18 vt setvart
19 vf setvarf
20 cltrn classLTrn
21 5 20 cfv classLTrnk
22 12 21 cfv classLTrnkw
23 17 cv setvars
24 19 cv setvarf
25 24 23 cfv classsf
26 18 cv setvart
27 24 26 cfv classtf
28 25 27 ccom classsftf
29 19 22 28 cmpt classfLTrnkwsftf
30 17 18 13 13 29 cmpo classsTEndokw,tTEndokwfLTrnkwsftf
31 16 30 cop class+ndxsTEndokw,tTEndokwfLTrnkwsftf
32 cmulr class𝑟
33 8 32 cfv classndx
34 26 23 ccom classts
35 17 18 13 13 34 cmpo classsTEndokw,tTEndokwts
36 33 35 cop classndxsTEndokw,tTEndokwts
37 14 31 36 ctp classBasendxTEndokw+ndxsTEndokw,tTEndokwfLTrnkwsftfndxsTEndokw,tTEndokwts
38 3 6 37 cmpt classwLHypkBasendxTEndokw+ndxsTEndokw,tTEndokwfLTrnkwsftfndxsTEndokw,tTEndokwts
39 1 2 38 cmpt classkVwLHypkBasendxTEndokw+ndxsTEndokw,tTEndokwfLTrnkwsftfndxsTEndokw,tTEndokwts
40 0 39 wceq wffEDRingR=kVwLHypkBasendxTEndokw+ndxsTEndokw,tTEndokwfLTrnkwsftfndxsTEndokw,tTEndokwts