Metamath Proof Explorer


Definition df-eqg

Description: Define the equivalence relation in a group generated by a subgroup. More precisely, if G is a group and H is a subgroup, then G ~QG H is the equivalence relation on G associated with the left cosets of H . A typical application of this definition is the construction of the quotient group (resp. ring) of a group (resp. ring) by a normal subgroup (resp. two-sided ideal). (Contributed by Mario Carneiro, 15-Jun-2015)

Ref Expression
Assertion df-eqg ~QG=rV,iVxy|xyBaserinvgrx+ryi

Detailed syntax breakdown

Step Hyp Ref Expression
0 cqg class~QG
1 vr setvarr
2 cvv classV
3 vi setvari
4 vx setvarx
5 vy setvary
6 4 cv setvarx
7 5 cv setvary
8 6 7 cpr classxy
9 cbs classBase
10 1 cv setvarr
11 10 9 cfv classBaser
12 8 11 wss wffxyBaser
13 cminusg classinvg
14 10 13 cfv classinvgr
15 6 14 cfv classinvgrx
16 cplusg class+𝑔
17 10 16 cfv class+r
18 15 7 17 co classinvgrx+ry
19 3 cv setvari
20 18 19 wcel wffinvgrx+ryi
21 12 20 wa wffxyBaserinvgrx+ryi
22 21 4 5 copab classxy|xyBaserinvgrx+ryi
23 1 3 2 2 22 cmpo classrV,iVxy|xyBaserinvgrx+ryi
24 0 23 wceq wff~QG=rV,iVxy|xyBaserinvgrx+ryi