Metamath Proof Explorer


Definition df-fallfac

Description: Define the falling factorial function. This is the function ( A x. ( A - 1 ) x. ... ( A - N ) ) for complex A and nonnegative integers N . (Contributed by Scott Fenton, 5-Jan-2018)

Ref Expression
Assertion df-fallfac FallFac=x,n0k=0n1xk

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfallfac classFallFac
1 vx setvarx
2 cc class
3 vn setvarn
4 cn0 class0
5 vk setvark
6 cc0 class0
7 cfz class
8 3 cv setvarn
9 cmin class
10 c1 class1
11 8 10 9 co classn1
12 6 11 7 co class0n1
13 1 cv setvarx
14 5 cv setvark
15 13 14 9 co classxk
16 12 15 5 cprod classk=0n1xk
17 1 3 2 4 16 cmpo classx,n0k=0n1xk
18 0 17 wceq wffFallFac=x,n0k=0n1xk