Metamath Proof Explorer


Definition df-frgr

Description: Define the class of all friendship graphs: a simple graph is called a friendship graph if every pair of its vertices has exactly one common neighbor. This condition is called thefriendship condition , see definition in MertziosUnger p. 152. (Contributed by Alexander van der Vekens and Mario Carneiro, 2-Oct-2017) (Revised by AV, 29-Mar-2021) (Revised by AV, 3-Jan-2024)

Ref Expression
Assertion df-frgr FriendGraph=gUSGraph|[˙Vtxg/v]˙[˙Edgg/e]˙kvlvk∃!xvxkxle

Detailed syntax breakdown

Step Hyp Ref Expression
0 cfrgr classFriendGraph
1 vg setvarg
2 cusgr classUSGraph
3 cvtx classVtx
4 1 cv setvarg
5 4 3 cfv classVtxg
6 vv setvarv
7 cedg classEdg
8 4 7 cfv classEdgg
9 ve setvare
10 vk setvark
11 6 cv setvarv
12 vl setvarl
13 10 cv setvark
14 13 csn classk
15 11 14 cdif classvk
16 vx setvarx
17 16 cv setvarx
18 17 13 cpr classxk
19 12 cv setvarl
20 17 19 cpr classxl
21 18 20 cpr classxkxl
22 9 cv setvare
23 21 22 wss wffxkxle
24 23 16 11 wreu wff∃!xvxkxle
25 24 12 15 wral wfflvk∃!xvxkxle
26 25 10 11 wral wffkvlvk∃!xvxkxle
27 26 9 8 wsbc wff[˙Edgg/e]˙kvlvk∃!xvxkxle
28 27 6 5 wsbc wff[˙Vtxg/v]˙[˙Edgg/e]˙kvlvk∃!xvxkxle
29 28 1 2 crab classgUSGraph|[˙Vtxg/v]˙[˙Edgg/e]˙kvlvk∃!xvxkxle
30 0 29 wceq wffFriendGraph=gUSGraph|[˙Vtxg/v]˙[˙Edgg/e]˙kvlvk∃!xvxkxle