Database SUPPLEMENTARY MATERIAL (USERS' MATHBOXES) Mathbox for Alexander van der Vekens Number theory (extension 2) Goldbach's conjectures df-gbow  
				
		 
		
			
		 
		Description:   Define the set of weak odd Goldbach numbers, which are positive odd
       integers that can be expressed as the sum of three primes.  By this
       definition, the weak ternary Goldbach conjecture can be expressed as
       A. m e. Odd ( 5 < m -> m e. GoldbachOddW )  .  (Contributed by AV , 14-Jun-2020) 
		
			
				
					Ref 
					Expression 
				 
				
					Assertion 
					df-gbow   ⊢   GoldbachOddW  =   z  ∈  Odd  |   ∃  p  ∈  ℙ   ∃  q  ∈  ℙ   ∃  r  ∈  ℙ   z  =  p  +  q  +  r                 
				 
			
		 
		
				Detailed syntax breakdown 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							0 
								
							 
							cgbow  class  GoldbachOddW    
						
							1 
								
							 
							vz  setvar  z    
						
							2 
								
							 
							codd  class  Odd    
						
							3 
								
							 
							vp  setvar  p    
						
							4 
								
							 
							cprime  class  ℙ    
						
							5 
								
							 
							vq  setvar  q    
						
							6 
								
							 
							vr  setvar  r    
						
							7 
								1 
							 
							cv  setvar  z    
						
							8 
								3 
							 
							cv  setvar  p    
						
							9 
								
							 
							caddc  class  +    
						
							10 
								5 
							 
							cv  setvar  q    
						
							11 
								8  10  9 
							 
							co  class  p  +  q    
						
							12 
								6 
							 
							cv  setvar  r    
						
							13 
								11  12  9 
							 
							co  class  p  +  q  +  r     
						
							14 
								7  13 
							 
							wceq  wff   z  =  p  +  q  +  r      
						
							15 
								14  6  4 
							 
							wrex  wff   ∃  r  ∈  ℙ   z  =  p  +  q  +  r        
						
							16 
								15  5  4 
							 
							wrex  wff   ∃  q  ∈  ℙ   ∃  r  ∈  ℙ   z  =  p  +  q  +  r          
						
							17 
								16  3  4 
							 
							wrex  wff   ∃  p  ∈  ℙ   ∃  q  ∈  ℙ   ∃  r  ∈  ℙ   z  =  p  +  q  +  r            
						
							18 
								17  1  2 
							 
							crab  class   z  ∈  Odd  |   ∃  p  ∈  ℙ   ∃  q  ∈  ℙ   ∃  r  ∈  ℙ   z  =  p  +  q  +  r              
						
							19 
								0  18 
							 
							wceq  wff   GoldbachOddW  =   z  ∈  Odd  |   ∃  p  ∈  ℙ   ∃  q  ∈  ℙ   ∃  r  ∈  ℙ   z  =  p  +  q  +  r