Metamath Proof Explorer


Definition df-gcdOLD

Description: gcdOLD ( A , B ) is the largest positive integer that evenly divides both A and B . (Contributed by Jeff Hoffman, 17-Jun-2008) (New usage is discouraged.)

Ref Expression
Assertion df-gcdOLD gcd OLD A B = sup x | A x B x <

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA class A
1 cB class B
2 0 1 cgcdOLD class gcd OLD A B
3 vx setvar x
4 cn class
5 cdiv class ÷
6 3 cv setvar x
7 0 6 5 co class A x
8 7 4 wcel wff A x
9 1 6 5 co class B x
10 9 4 wcel wff B x
11 8 10 wa wff A x B x
12 11 3 4 crab class x | A x B x
13 clt class <
14 12 4 13 csup class sup x | A x B x <
15 2 14 wceq wff gcd OLD A B = sup x | A x B x <