Step |
Hyp |
Ref |
Expression |
0 |
|
cA |
⊢ 𝐴 |
1 |
|
cB |
⊢ 𝐵 |
2 |
0 1
|
cgcdOLD |
⊢ gcdOLD ( 𝐴 , 𝐵 ) |
3 |
|
vx |
⊢ 𝑥 |
4 |
|
cn |
⊢ ℕ |
5 |
|
cdiv |
⊢ / |
6 |
3
|
cv |
⊢ 𝑥 |
7 |
0 6 5
|
co |
⊢ ( 𝐴 / 𝑥 ) |
8 |
7 4
|
wcel |
⊢ ( 𝐴 / 𝑥 ) ∈ ℕ |
9 |
1 6 5
|
co |
⊢ ( 𝐵 / 𝑥 ) |
10 |
9 4
|
wcel |
⊢ ( 𝐵 / 𝑥 ) ∈ ℕ |
11 |
8 10
|
wa |
⊢ ( ( 𝐴 / 𝑥 ) ∈ ℕ ∧ ( 𝐵 / 𝑥 ) ∈ ℕ ) |
12 |
11 3 4
|
crab |
⊢ { 𝑥 ∈ ℕ ∣ ( ( 𝐴 / 𝑥 ) ∈ ℕ ∧ ( 𝐵 / 𝑥 ) ∈ ℕ ) } |
13 |
|
clt |
⊢ < |
14 |
12 4 13
|
csup |
⊢ sup ( { 𝑥 ∈ ℕ ∣ ( ( 𝐴 / 𝑥 ) ∈ ℕ ∧ ( 𝐵 / 𝑥 ) ∈ ℕ ) } , ℕ , < ) |
15 |
2 14
|
wceq |
⊢ gcdOLD ( 𝐴 , 𝐵 ) = sup ( { 𝑥 ∈ ℕ ∣ ( ( 𝐴 / 𝑥 ) ∈ ℕ ∧ ( 𝐵 / 𝑥 ) ∈ ℕ ) } , ℕ , < ) |