Metamath Proof Explorer


Definition df-gcdOLD

Description: gcdOLD ( A , B ) is the largest positive integer that evenly divides both A and B . (Contributed by Jeff Hoffman, 17-Jun-2008) (New usage is discouraged.)

Ref Expression
Assertion df-gcdOLD gcdOLD ( 𝐴 , 𝐵 ) = sup ( { 𝑥 ∈ ℕ ∣ ( ( 𝐴 / 𝑥 ) ∈ ℕ ∧ ( 𝐵 / 𝑥 ) ∈ ℕ ) } , ℕ , < )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA 𝐴
1 cB 𝐵
2 0 1 cgcdOLD gcdOLD ( 𝐴 , 𝐵 )
3 vx 𝑥
4 cn
5 cdiv /
6 3 cv 𝑥
7 0 6 5 co ( 𝐴 / 𝑥 )
8 7 4 wcel ( 𝐴 / 𝑥 ) ∈ ℕ
9 1 6 5 co ( 𝐵 / 𝑥 )
10 9 4 wcel ( 𝐵 / 𝑥 ) ∈ ℕ
11 8 10 wa ( ( 𝐴 / 𝑥 ) ∈ ℕ ∧ ( 𝐵 / 𝑥 ) ∈ ℕ )
12 11 3 4 crab { 𝑥 ∈ ℕ ∣ ( ( 𝐴 / 𝑥 ) ∈ ℕ ∧ ( 𝐵 / 𝑥 ) ∈ ℕ ) }
13 clt <
14 12 4 13 csup sup ( { 𝑥 ∈ ℕ ∣ ( ( 𝐴 / 𝑥 ) ∈ ℕ ∧ ( 𝐵 / 𝑥 ) ∈ ℕ ) } , ℕ , < )
15 2 14 wceq gcdOLD ( 𝐴 , 𝐵 ) = sup ( { 𝑥 ∈ ℕ ∣ ( ( 𝐴 / 𝑥 ) ∈ ℕ ∧ ( 𝐵 / 𝑥 ) ∈ ℕ ) } , ℕ , < )