Metamath Proof Explorer


Definition df-ghomOLD

Description: Obsolete version of df-ghm as of 15-Mar-2020. Define the set of group homomorphisms from g to h . (Contributed by Paul Chapman, 25-Feb-2008) (New usage is discouraged.)

Ref Expression
Assertion df-ghomOLD GrpOpHom=gGrpOp,hGrpOpf|f:rangranhxrangyrangfxhfy=fxgy

Detailed syntax breakdown

Step Hyp Ref Expression
0 cghomOLD classGrpOpHom
1 vg setvarg
2 cgr classGrpOp
3 vh setvarh
4 vf setvarf
5 4 cv setvarf
6 1 cv setvarg
7 6 crn classrang
8 3 cv setvarh
9 8 crn classranh
10 7 9 5 wf wfff:rangranh
11 vx setvarx
12 vy setvary
13 11 cv setvarx
14 13 5 cfv classfx
15 12 cv setvary
16 15 5 cfv classfy
17 14 16 8 co classfxhfy
18 13 15 6 co classxgy
19 18 5 cfv classfxgy
20 17 19 wceq wfffxhfy=fxgy
21 20 12 7 wral wffyrangfxhfy=fxgy
22 21 11 7 wral wffxrangyrangfxhfy=fxgy
23 10 22 wa wfff:rangranhxrangyrangfxhfy=fxgy
24 23 4 cab classf|f:rangranhxrangyrangfxhfy=fxgy
25 1 3 2 2 24 cmpo classgGrpOp,hGrpOpf|f:rangranhxrangyrangfxhfy=fxgy
26 0 25 wceq wffGrpOpHom=gGrpOp,hGrpOpf|f:rangranhxrangyrangfxhfy=fxgy