Metamath Proof Explorer


Definition df-grisom

Description: Define the class of all isomorphisms between two graphs. (Contributed by AV, 11-Dec-2022)

Ref Expression
Assertion df-grisom GrIsom = x V , y V f g | f : Vtx x 1-1 onto Vtx y g : dom iEdg x 1-1 onto dom iEdg y i dom iEdg x f iEdg x i = iEdg y g i

Detailed syntax breakdown

Step Hyp Ref Expression
0 cgrisom class GrIsom
1 vx setvar x
2 cvv class V
3 vy setvar y
4 vf setvar f
5 vg setvar g
6 4 cv setvar f
7 cvtx class Vtx
8 1 cv setvar x
9 8 7 cfv class Vtx x
10 3 cv setvar y
11 10 7 cfv class Vtx y
12 9 11 6 wf1o wff f : Vtx x 1-1 onto Vtx y
13 5 cv setvar g
14 ciedg class iEdg
15 8 14 cfv class iEdg x
16 15 cdm class dom iEdg x
17 10 14 cfv class iEdg y
18 17 cdm class dom iEdg y
19 16 18 13 wf1o wff g : dom iEdg x 1-1 onto dom iEdg y
20 vi setvar i
21 20 cv setvar i
22 21 15 cfv class iEdg x i
23 6 22 cima class f iEdg x i
24 21 13 cfv class g i
25 24 17 cfv class iEdg y g i
26 23 25 wceq wff f iEdg x i = iEdg y g i
27 26 20 16 wral wff i dom iEdg x f iEdg x i = iEdg y g i
28 12 19 27 w3a wff f : Vtx x 1-1 onto Vtx y g : dom iEdg x 1-1 onto dom iEdg y i dom iEdg x f iEdg x i = iEdg y g i
29 28 4 5 copab class f g | f : Vtx x 1-1 onto Vtx y g : dom iEdg x 1-1 onto dom iEdg y i dom iEdg x f iEdg x i = iEdg y g i
30 1 3 2 2 29 cmpo class x V , y V f g | f : Vtx x 1-1 onto Vtx y g : dom iEdg x 1-1 onto dom iEdg y i dom iEdg x f iEdg x i = iEdg y g i
31 0 30 wceq wff GrIsom = x V , y V f g | f : Vtx x 1-1 onto Vtx y g : dom iEdg x 1-1 onto dom iEdg y i dom iEdg x f iEdg x i = iEdg y g i