Step |
Hyp |
Ref |
Expression |
0 |
|
cgrisom |
⊢ GrIsom |
1 |
|
vx |
⊢ 𝑥 |
2 |
|
cvv |
⊢ V |
3 |
|
vy |
⊢ 𝑦 |
4 |
|
vf |
⊢ 𝑓 |
5 |
|
vg |
⊢ 𝑔 |
6 |
4
|
cv |
⊢ 𝑓 |
7 |
|
cvtx |
⊢ Vtx |
8 |
1
|
cv |
⊢ 𝑥 |
9 |
8 7
|
cfv |
⊢ ( Vtx ‘ 𝑥 ) |
10 |
3
|
cv |
⊢ 𝑦 |
11 |
10 7
|
cfv |
⊢ ( Vtx ‘ 𝑦 ) |
12 |
9 11 6
|
wf1o |
⊢ 𝑓 : ( Vtx ‘ 𝑥 ) –1-1-onto→ ( Vtx ‘ 𝑦 ) |
13 |
5
|
cv |
⊢ 𝑔 |
14 |
|
ciedg |
⊢ iEdg |
15 |
8 14
|
cfv |
⊢ ( iEdg ‘ 𝑥 ) |
16 |
15
|
cdm |
⊢ dom ( iEdg ‘ 𝑥 ) |
17 |
10 14
|
cfv |
⊢ ( iEdg ‘ 𝑦 ) |
18 |
17
|
cdm |
⊢ dom ( iEdg ‘ 𝑦 ) |
19 |
16 18 13
|
wf1o |
⊢ 𝑔 : dom ( iEdg ‘ 𝑥 ) –1-1-onto→ dom ( iEdg ‘ 𝑦 ) |
20 |
|
vi |
⊢ 𝑖 |
21 |
20
|
cv |
⊢ 𝑖 |
22 |
21 15
|
cfv |
⊢ ( ( iEdg ‘ 𝑥 ) ‘ 𝑖 ) |
23 |
6 22
|
cima |
⊢ ( 𝑓 “ ( ( iEdg ‘ 𝑥 ) ‘ 𝑖 ) ) |
24 |
21 13
|
cfv |
⊢ ( 𝑔 ‘ 𝑖 ) |
25 |
24 17
|
cfv |
⊢ ( ( iEdg ‘ 𝑦 ) ‘ ( 𝑔 ‘ 𝑖 ) ) |
26 |
23 25
|
wceq |
⊢ ( 𝑓 “ ( ( iEdg ‘ 𝑥 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝑦 ) ‘ ( 𝑔 ‘ 𝑖 ) ) |
27 |
26 20 16
|
wral |
⊢ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑥 ) ( 𝑓 “ ( ( iEdg ‘ 𝑥 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝑦 ) ‘ ( 𝑔 ‘ 𝑖 ) ) |
28 |
12 19 27
|
w3a |
⊢ ( 𝑓 : ( Vtx ‘ 𝑥 ) –1-1-onto→ ( Vtx ‘ 𝑦 ) ∧ 𝑔 : dom ( iEdg ‘ 𝑥 ) –1-1-onto→ dom ( iEdg ‘ 𝑦 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑥 ) ( 𝑓 “ ( ( iEdg ‘ 𝑥 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝑦 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) |
29 |
28 4 5
|
copab |
⊢ { 〈 𝑓 , 𝑔 〉 ∣ ( 𝑓 : ( Vtx ‘ 𝑥 ) –1-1-onto→ ( Vtx ‘ 𝑦 ) ∧ 𝑔 : dom ( iEdg ‘ 𝑥 ) –1-1-onto→ dom ( iEdg ‘ 𝑦 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑥 ) ( 𝑓 “ ( ( iEdg ‘ 𝑥 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝑦 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) } |
30 |
1 3 2 2 29
|
cmpo |
⊢ ( 𝑥 ∈ V , 𝑦 ∈ V ↦ { 〈 𝑓 , 𝑔 〉 ∣ ( 𝑓 : ( Vtx ‘ 𝑥 ) –1-1-onto→ ( Vtx ‘ 𝑦 ) ∧ 𝑔 : dom ( iEdg ‘ 𝑥 ) –1-1-onto→ dom ( iEdg ‘ 𝑦 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑥 ) ( 𝑓 “ ( ( iEdg ‘ 𝑥 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝑦 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) } ) |
31 |
0 30
|
wceq |
⊢ GrIsom = ( 𝑥 ∈ V , 𝑦 ∈ V ↦ { 〈 𝑓 , 𝑔 〉 ∣ ( 𝑓 : ( Vtx ‘ 𝑥 ) –1-1-onto→ ( Vtx ‘ 𝑦 ) ∧ 𝑔 : dom ( iEdg ‘ 𝑥 ) –1-1-onto→ dom ( iEdg ‘ 𝑦 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑥 ) ( 𝑓 “ ( ( iEdg ‘ 𝑥 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝑦 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) } ) |