Step |
Hyp |
Ref |
Expression |
0 |
|
cisomgr |
⊢ IsomGr |
1 |
|
vx |
⊢ 𝑥 |
2 |
|
vy |
⊢ 𝑦 |
3 |
|
vf |
⊢ 𝑓 |
4 |
3
|
cv |
⊢ 𝑓 |
5 |
|
cvtx |
⊢ Vtx |
6 |
1
|
cv |
⊢ 𝑥 |
7 |
6 5
|
cfv |
⊢ ( Vtx ‘ 𝑥 ) |
8 |
2
|
cv |
⊢ 𝑦 |
9 |
8 5
|
cfv |
⊢ ( Vtx ‘ 𝑦 ) |
10 |
7 9 4
|
wf1o |
⊢ 𝑓 : ( Vtx ‘ 𝑥 ) –1-1-onto→ ( Vtx ‘ 𝑦 ) |
11 |
|
vg |
⊢ 𝑔 |
12 |
11
|
cv |
⊢ 𝑔 |
13 |
|
ciedg |
⊢ iEdg |
14 |
6 13
|
cfv |
⊢ ( iEdg ‘ 𝑥 ) |
15 |
14
|
cdm |
⊢ dom ( iEdg ‘ 𝑥 ) |
16 |
8 13
|
cfv |
⊢ ( iEdg ‘ 𝑦 ) |
17 |
16
|
cdm |
⊢ dom ( iEdg ‘ 𝑦 ) |
18 |
15 17 12
|
wf1o |
⊢ 𝑔 : dom ( iEdg ‘ 𝑥 ) –1-1-onto→ dom ( iEdg ‘ 𝑦 ) |
19 |
|
vi |
⊢ 𝑖 |
20 |
19
|
cv |
⊢ 𝑖 |
21 |
20 14
|
cfv |
⊢ ( ( iEdg ‘ 𝑥 ) ‘ 𝑖 ) |
22 |
4 21
|
cima |
⊢ ( 𝑓 “ ( ( iEdg ‘ 𝑥 ) ‘ 𝑖 ) ) |
23 |
20 12
|
cfv |
⊢ ( 𝑔 ‘ 𝑖 ) |
24 |
23 16
|
cfv |
⊢ ( ( iEdg ‘ 𝑦 ) ‘ ( 𝑔 ‘ 𝑖 ) ) |
25 |
22 24
|
wceq |
⊢ ( 𝑓 “ ( ( iEdg ‘ 𝑥 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝑦 ) ‘ ( 𝑔 ‘ 𝑖 ) ) |
26 |
25 19 15
|
wral |
⊢ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑥 ) ( 𝑓 “ ( ( iEdg ‘ 𝑥 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝑦 ) ‘ ( 𝑔 ‘ 𝑖 ) ) |
27 |
18 26
|
wa |
⊢ ( 𝑔 : dom ( iEdg ‘ 𝑥 ) –1-1-onto→ dom ( iEdg ‘ 𝑦 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑥 ) ( 𝑓 “ ( ( iEdg ‘ 𝑥 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝑦 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) |
28 |
27 11
|
wex |
⊢ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝑥 ) –1-1-onto→ dom ( iEdg ‘ 𝑦 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑥 ) ( 𝑓 “ ( ( iEdg ‘ 𝑥 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝑦 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) |
29 |
10 28
|
wa |
⊢ ( 𝑓 : ( Vtx ‘ 𝑥 ) –1-1-onto→ ( Vtx ‘ 𝑦 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝑥 ) –1-1-onto→ dom ( iEdg ‘ 𝑦 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑥 ) ( 𝑓 “ ( ( iEdg ‘ 𝑥 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝑦 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) |
30 |
29 3
|
wex |
⊢ ∃ 𝑓 ( 𝑓 : ( Vtx ‘ 𝑥 ) –1-1-onto→ ( Vtx ‘ 𝑦 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝑥 ) –1-1-onto→ dom ( iEdg ‘ 𝑦 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑥 ) ( 𝑓 “ ( ( iEdg ‘ 𝑥 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝑦 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) |
31 |
30 1 2
|
copab |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑓 ( 𝑓 : ( Vtx ‘ 𝑥 ) –1-1-onto→ ( Vtx ‘ 𝑦 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝑥 ) –1-1-onto→ dom ( iEdg ‘ 𝑦 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑥 ) ( 𝑓 “ ( ( iEdg ‘ 𝑥 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝑦 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) } |
32 |
0 31
|
wceq |
⊢ IsomGr = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑓 ( 𝑓 : ( Vtx ‘ 𝑥 ) –1-1-onto→ ( Vtx ‘ 𝑦 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝑥 ) –1-1-onto→ dom ( iEdg ‘ 𝑦 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑥 ) ( 𝑓 “ ( ( iEdg ‘ 𝑥 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝑦 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) } |