Description: The isomorphy relation for graphs is a relation. (Contributed by AV, 11-Nov-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | isomgrrel | ⊢ Rel IsomGr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-isomgr | ⊢ IsomGr = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑓 ( 𝑓 : ( Vtx ‘ 𝑥 ) –1-1-onto→ ( Vtx ‘ 𝑦 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝑥 ) –1-1-onto→ dom ( iEdg ‘ 𝑦 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑥 ) ( 𝑓 “ ( ( iEdg ‘ 𝑥 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝑦 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) } | |
2 | 1 | relopabiv | ⊢ Rel IsomGr |