Metamath Proof Explorer


Theorem isomgrrel

Description: The isomorphy relation for graphs is a relation. (Contributed by AV, 11-Nov-2022)

Ref Expression
Assertion isomgrrel
|- Rel IsomGr

Proof

Step Hyp Ref Expression
1 df-isomgr
 |-  IsomGr = { <. x , y >. | E. f ( f : ( Vtx ` x ) -1-1-onto-> ( Vtx ` y ) /\ E. g ( g : dom ( iEdg ` x ) -1-1-onto-> dom ( iEdg ` y ) /\ A. i e. dom ( iEdg ` x ) ( f " ( ( iEdg ` x ) ` i ) ) = ( ( iEdg ` y ) ` ( g ` i ) ) ) ) }
2 1 relopabiv
 |-  Rel IsomGr