Description: The isomorphy relation for graphs is a relation. (Contributed by AV, 11-Nov-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | isomgrrel | |- Rel IsomGr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-isomgr | |- IsomGr = { <. x , y >. | E. f ( f : ( Vtx ` x ) -1-1-onto-> ( Vtx ` y ) /\ E. g ( g : dom ( iEdg ` x ) -1-1-onto-> dom ( iEdg ` y ) /\ A. i e. dom ( iEdg ` x ) ( f " ( ( iEdg ` x ) ` i ) ) = ( ( iEdg ` y ) ` ( g ` i ) ) ) ) } |
|
2 | 1 | relopabiv | |- Rel IsomGr |