Step |
Hyp |
Ref |
Expression |
1 |
|
isomgr.v |
|- V = ( Vtx ` A ) |
2 |
|
isomgr.w |
|- W = ( Vtx ` B ) |
3 |
|
isomgr.i |
|- I = ( iEdg ` A ) |
4 |
|
isomgr.j |
|- J = ( iEdg ` B ) |
5 |
|
eqidd |
|- ( ( x = A /\ y = B ) -> f = f ) |
6 |
|
fveq2 |
|- ( x = A -> ( Vtx ` x ) = ( Vtx ` A ) ) |
7 |
6
|
adantr |
|- ( ( x = A /\ y = B ) -> ( Vtx ` x ) = ( Vtx ` A ) ) |
8 |
7 1
|
eqtr4di |
|- ( ( x = A /\ y = B ) -> ( Vtx ` x ) = V ) |
9 |
|
fveq2 |
|- ( y = B -> ( Vtx ` y ) = ( Vtx ` B ) ) |
10 |
9
|
adantl |
|- ( ( x = A /\ y = B ) -> ( Vtx ` y ) = ( Vtx ` B ) ) |
11 |
10 2
|
eqtr4di |
|- ( ( x = A /\ y = B ) -> ( Vtx ` y ) = W ) |
12 |
5 8 11
|
f1oeq123d |
|- ( ( x = A /\ y = B ) -> ( f : ( Vtx ` x ) -1-1-onto-> ( Vtx ` y ) <-> f : V -1-1-onto-> W ) ) |
13 |
|
eqidd |
|- ( ( x = A /\ y = B ) -> g = g ) |
14 |
|
fveq2 |
|- ( x = A -> ( iEdg ` x ) = ( iEdg ` A ) ) |
15 |
14
|
adantr |
|- ( ( x = A /\ y = B ) -> ( iEdg ` x ) = ( iEdg ` A ) ) |
16 |
15 3
|
eqtr4di |
|- ( ( x = A /\ y = B ) -> ( iEdg ` x ) = I ) |
17 |
16
|
dmeqd |
|- ( ( x = A /\ y = B ) -> dom ( iEdg ` x ) = dom I ) |
18 |
|
fveq2 |
|- ( y = B -> ( iEdg ` y ) = ( iEdg ` B ) ) |
19 |
18
|
adantl |
|- ( ( x = A /\ y = B ) -> ( iEdg ` y ) = ( iEdg ` B ) ) |
20 |
19 4
|
eqtr4di |
|- ( ( x = A /\ y = B ) -> ( iEdg ` y ) = J ) |
21 |
20
|
dmeqd |
|- ( ( x = A /\ y = B ) -> dom ( iEdg ` y ) = dom J ) |
22 |
13 17 21
|
f1oeq123d |
|- ( ( x = A /\ y = B ) -> ( g : dom ( iEdg ` x ) -1-1-onto-> dom ( iEdg ` y ) <-> g : dom I -1-1-onto-> dom J ) ) |
23 |
16
|
fveq1d |
|- ( ( x = A /\ y = B ) -> ( ( iEdg ` x ) ` i ) = ( I ` i ) ) |
24 |
23
|
imaeq2d |
|- ( ( x = A /\ y = B ) -> ( f " ( ( iEdg ` x ) ` i ) ) = ( f " ( I ` i ) ) ) |
25 |
20
|
fveq1d |
|- ( ( x = A /\ y = B ) -> ( ( iEdg ` y ) ` ( g ` i ) ) = ( J ` ( g ` i ) ) ) |
26 |
24 25
|
eqeq12d |
|- ( ( x = A /\ y = B ) -> ( ( f " ( ( iEdg ` x ) ` i ) ) = ( ( iEdg ` y ) ` ( g ` i ) ) <-> ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) |
27 |
17 26
|
raleqbidv |
|- ( ( x = A /\ y = B ) -> ( A. i e. dom ( iEdg ` x ) ( f " ( ( iEdg ` x ) ` i ) ) = ( ( iEdg ` y ) ` ( g ` i ) ) <-> A. i e. dom I ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) |
28 |
22 27
|
anbi12d |
|- ( ( x = A /\ y = B ) -> ( ( g : dom ( iEdg ` x ) -1-1-onto-> dom ( iEdg ` y ) /\ A. i e. dom ( iEdg ` x ) ( f " ( ( iEdg ` x ) ` i ) ) = ( ( iEdg ` y ) ` ( g ` i ) ) ) <-> ( g : dom I -1-1-onto-> dom J /\ A. i e. dom I ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) |
29 |
28
|
exbidv |
|- ( ( x = A /\ y = B ) -> ( E. g ( g : dom ( iEdg ` x ) -1-1-onto-> dom ( iEdg ` y ) /\ A. i e. dom ( iEdg ` x ) ( f " ( ( iEdg ` x ) ` i ) ) = ( ( iEdg ` y ) ` ( g ` i ) ) ) <-> E. g ( g : dom I -1-1-onto-> dom J /\ A. i e. dom I ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) |
30 |
12 29
|
anbi12d |
|- ( ( x = A /\ y = B ) -> ( ( f : ( Vtx ` x ) -1-1-onto-> ( Vtx ` y ) /\ E. g ( g : dom ( iEdg ` x ) -1-1-onto-> dom ( iEdg ` y ) /\ A. i e. dom ( iEdg ` x ) ( f " ( ( iEdg ` x ) ` i ) ) = ( ( iEdg ` y ) ` ( g ` i ) ) ) ) <-> ( f : V -1-1-onto-> W /\ E. g ( g : dom I -1-1-onto-> dom J /\ A. i e. dom I ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) |
31 |
30
|
exbidv |
|- ( ( x = A /\ y = B ) -> ( E. f ( f : ( Vtx ` x ) -1-1-onto-> ( Vtx ` y ) /\ E. g ( g : dom ( iEdg ` x ) -1-1-onto-> dom ( iEdg ` y ) /\ A. i e. dom ( iEdg ` x ) ( f " ( ( iEdg ` x ) ` i ) ) = ( ( iEdg ` y ) ` ( g ` i ) ) ) ) <-> E. f ( f : V -1-1-onto-> W /\ E. g ( g : dom I -1-1-onto-> dom J /\ A. i e. dom I ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) |
32 |
|
df-isomgr |
|- IsomGr = { <. x , y >. | E. f ( f : ( Vtx ` x ) -1-1-onto-> ( Vtx ` y ) /\ E. g ( g : dom ( iEdg ` x ) -1-1-onto-> dom ( iEdg ` y ) /\ A. i e. dom ( iEdg ` x ) ( f " ( ( iEdg ` x ) ` i ) ) = ( ( iEdg ` y ) ` ( g ` i ) ) ) ) } |
33 |
31 32
|
brabga |
|- ( ( A e. X /\ B e. Y ) -> ( A IsomGr B <-> E. f ( f : V -1-1-onto-> W /\ E. g ( g : dom I -1-1-onto-> dom J /\ A. i e. dom I ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) |