Step |
Hyp |
Ref |
Expression |
1 |
|
isomgr.v |
⊢ 𝑉 = ( Vtx ‘ 𝐴 ) |
2 |
|
isomgr.w |
⊢ 𝑊 = ( Vtx ‘ 𝐵 ) |
3 |
|
isomgr.i |
⊢ 𝐼 = ( iEdg ‘ 𝐴 ) |
4 |
|
isomgr.j |
⊢ 𝐽 = ( iEdg ‘ 𝐵 ) |
5 |
|
eqidd |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → 𝑓 = 𝑓 ) |
6 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( Vtx ‘ 𝑥 ) = ( Vtx ‘ 𝐴 ) ) |
7 |
6
|
adantr |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( Vtx ‘ 𝑥 ) = ( Vtx ‘ 𝐴 ) ) |
8 |
7 1
|
eqtr4di |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( Vtx ‘ 𝑥 ) = 𝑉 ) |
9 |
|
fveq2 |
⊢ ( 𝑦 = 𝐵 → ( Vtx ‘ 𝑦 ) = ( Vtx ‘ 𝐵 ) ) |
10 |
9
|
adantl |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( Vtx ‘ 𝑦 ) = ( Vtx ‘ 𝐵 ) ) |
11 |
10 2
|
eqtr4di |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( Vtx ‘ 𝑦 ) = 𝑊 ) |
12 |
5 8 11
|
f1oeq123d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑓 : ( Vtx ‘ 𝑥 ) –1-1-onto→ ( Vtx ‘ 𝑦 ) ↔ 𝑓 : 𝑉 –1-1-onto→ 𝑊 ) ) |
13 |
|
eqidd |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → 𝑔 = 𝑔 ) |
14 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( iEdg ‘ 𝑥 ) = ( iEdg ‘ 𝐴 ) ) |
15 |
14
|
adantr |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( iEdg ‘ 𝑥 ) = ( iEdg ‘ 𝐴 ) ) |
16 |
15 3
|
eqtr4di |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( iEdg ‘ 𝑥 ) = 𝐼 ) |
17 |
16
|
dmeqd |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → dom ( iEdg ‘ 𝑥 ) = dom 𝐼 ) |
18 |
|
fveq2 |
⊢ ( 𝑦 = 𝐵 → ( iEdg ‘ 𝑦 ) = ( iEdg ‘ 𝐵 ) ) |
19 |
18
|
adantl |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( iEdg ‘ 𝑦 ) = ( iEdg ‘ 𝐵 ) ) |
20 |
19 4
|
eqtr4di |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( iEdg ‘ 𝑦 ) = 𝐽 ) |
21 |
20
|
dmeqd |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → dom ( iEdg ‘ 𝑦 ) = dom 𝐽 ) |
22 |
13 17 21
|
f1oeq123d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑔 : dom ( iEdg ‘ 𝑥 ) –1-1-onto→ dom ( iEdg ‘ 𝑦 ) ↔ 𝑔 : dom 𝐼 –1-1-onto→ dom 𝐽 ) ) |
23 |
16
|
fveq1d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( iEdg ‘ 𝑥 ) ‘ 𝑖 ) = ( 𝐼 ‘ 𝑖 ) ) |
24 |
23
|
imaeq2d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝑓 “ ( ( iEdg ‘ 𝑥 ) ‘ 𝑖 ) ) = ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) ) |
25 |
20
|
fveq1d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( iEdg ‘ 𝑦 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) |
26 |
24 25
|
eqeq12d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( 𝑓 “ ( ( iEdg ‘ 𝑥 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝑦 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ↔ ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) |
27 |
17 26
|
raleqbidv |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑥 ) ( 𝑓 “ ( ( iEdg ‘ 𝑥 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝑦 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ↔ ∀ 𝑖 ∈ dom 𝐼 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) |
28 |
22 27
|
anbi12d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( 𝑔 : dom ( iEdg ‘ 𝑥 ) –1-1-onto→ dom ( iEdg ‘ 𝑦 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑥 ) ( 𝑓 “ ( ( iEdg ‘ 𝑥 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝑦 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ↔ ( 𝑔 : dom 𝐼 –1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) |
29 |
28
|
exbidv |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝑥 ) –1-1-onto→ dom ( iEdg ‘ 𝑦 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑥 ) ( 𝑓 “ ( ( iEdg ‘ 𝑥 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝑦 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ↔ ∃ 𝑔 ( 𝑔 : dom 𝐼 –1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) |
30 |
12 29
|
anbi12d |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ( 𝑓 : ( Vtx ‘ 𝑥 ) –1-1-onto→ ( Vtx ‘ 𝑦 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝑥 ) –1-1-onto→ dom ( iEdg ‘ 𝑦 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑥 ) ( 𝑓 “ ( ( iEdg ‘ 𝑥 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝑦 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ↔ ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∃ 𝑔 ( 𝑔 : dom 𝐼 –1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |
31 |
30
|
exbidv |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( ∃ 𝑓 ( 𝑓 : ( Vtx ‘ 𝑥 ) –1-1-onto→ ( Vtx ‘ 𝑦 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝑥 ) –1-1-onto→ dom ( iEdg ‘ 𝑦 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑥 ) ( 𝑓 “ ( ( iEdg ‘ 𝑥 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝑦 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ↔ ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∃ 𝑔 ( 𝑔 : dom 𝐼 –1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |
32 |
|
df-isomgr |
⊢ IsomGr = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑓 ( 𝑓 : ( Vtx ‘ 𝑥 ) –1-1-onto→ ( Vtx ‘ 𝑦 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝑥 ) –1-1-onto→ dom ( iEdg ‘ 𝑦 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝑥 ) ( 𝑓 “ ( ( iEdg ‘ 𝑥 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝑦 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) } |
33 |
31 32
|
brabga |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) → ( 𝐴 IsomGr 𝐵 ↔ ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∃ 𝑔 ( 𝑔 : dom 𝐼 –1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |