Metamath Proof Explorer


Theorem isisomgr

Description: Implications of two graphs being isomorphic. (Contributed by AV, 11-Nov-2022)

Ref Expression
Hypotheses isomgr.v 𝑉 = ( Vtx ‘ 𝐴 )
isomgr.w 𝑊 = ( Vtx ‘ 𝐵 )
isomgr.i 𝐼 = ( iEdg ‘ 𝐴 )
isomgr.j 𝐽 = ( iEdg ‘ 𝐵 )
Assertion isisomgr ( 𝐴 IsomGr 𝐵 → ∃ 𝑓 ( 𝑓 : 𝑉1-1-onto𝑊 ∧ ∃ 𝑔 ( 𝑔 : dom 𝐼1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝑓 “ ( 𝐼𝑖 ) ) = ( 𝐽 ‘ ( 𝑔𝑖 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 isomgr.v 𝑉 = ( Vtx ‘ 𝐴 )
2 isomgr.w 𝑊 = ( Vtx ‘ 𝐵 )
3 isomgr.i 𝐼 = ( iEdg ‘ 𝐴 )
4 isomgr.j 𝐽 = ( iEdg ‘ 𝐵 )
5 isomgrrel Rel IsomGr
6 5 brrelex12i ( 𝐴 IsomGr 𝐵 → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) )
7 1 2 3 4 isomgr ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 IsomGr 𝐵 ↔ ∃ 𝑓 ( 𝑓 : 𝑉1-1-onto𝑊 ∧ ∃ 𝑔 ( 𝑔 : dom 𝐼1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝑓 “ ( 𝐼𝑖 ) ) = ( 𝐽 ‘ ( 𝑔𝑖 ) ) ) ) ) )
8 6 7 syl ( 𝐴 IsomGr 𝐵 → ( 𝐴 IsomGr 𝐵 ↔ ∃ 𝑓 ( 𝑓 : 𝑉1-1-onto𝑊 ∧ ∃ 𝑔 ( 𝑔 : dom 𝐼1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝑓 “ ( 𝐼𝑖 ) ) = ( 𝐽 ‘ ( 𝑔𝑖 ) ) ) ) ) )
9 8 ibi ( 𝐴 IsomGr 𝐵 → ∃ 𝑓 ( 𝑓 : 𝑉1-1-onto𝑊 ∧ ∃ 𝑔 ( 𝑔 : dom 𝐼1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝑓 “ ( 𝐼𝑖 ) ) = ( 𝐽 ‘ ( 𝑔𝑖 ) ) ) ) )