Step |
Hyp |
Ref |
Expression |
1 |
|
isomgr.v |
⊢ 𝑉 = ( Vtx ‘ 𝐴 ) |
2 |
|
isomgr.w |
⊢ 𝑊 = ( Vtx ‘ 𝐵 ) |
3 |
|
isomgr.i |
⊢ 𝐼 = ( iEdg ‘ 𝐴 ) |
4 |
|
isomgr.j |
⊢ 𝐽 = ( iEdg ‘ 𝐵 ) |
5 |
|
isomgrrel |
⊢ Rel IsomGr |
6 |
5
|
brrelex12i |
⊢ ( 𝐴 IsomGr 𝐵 → ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ) |
7 |
1 2 3 4
|
isomgr |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 IsomGr 𝐵 ↔ ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∃ 𝑔 ( 𝑔 : dom 𝐼 –1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |
8 |
6 7
|
syl |
⊢ ( 𝐴 IsomGr 𝐵 → ( 𝐴 IsomGr 𝐵 ↔ ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∃ 𝑔 ( 𝑔 : dom 𝐼 –1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |
9 |
8
|
ibi |
⊢ ( 𝐴 IsomGr 𝐵 → ∃ 𝑓 ( 𝑓 : 𝑉 –1-1-onto→ 𝑊 ∧ ∃ 𝑔 ( 𝑔 : dom 𝐼 –1-1-onto→ dom 𝐽 ∧ ∀ 𝑖 ∈ dom 𝐼 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) |