Metamath Proof Explorer


Theorem isisomgr

Description: Implications of two graphs being isomorphic. (Contributed by AV, 11-Nov-2022)

Ref Expression
Hypotheses isomgr.v V = Vtx A
isomgr.w W = Vtx B
isomgr.i I = iEdg A
isomgr.j J = iEdg B
Assertion isisomgr A IsomGr B f f : V 1-1 onto W g g : dom I 1-1 onto dom J i dom I f I i = J g i

Proof

Step Hyp Ref Expression
1 isomgr.v V = Vtx A
2 isomgr.w W = Vtx B
3 isomgr.i I = iEdg A
4 isomgr.j J = iEdg B
5 isomgrrel Rel IsomGr
6 5 brrelex12i A IsomGr B A V B V
7 1 2 3 4 isomgr A V B V A IsomGr B f f : V 1-1 onto W g g : dom I 1-1 onto dom J i dom I f I i = J g i
8 6 7 syl A IsomGr B A IsomGr B f f : V 1-1 onto W g g : dom I 1-1 onto dom J i dom I f I i = J g i
9 8 ibi A IsomGr B f f : V 1-1 onto W g g : dom I 1-1 onto dom J i dom I f I i = J g i