Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Graph theory (extension)
Isomorphic graphs
isisomgr
Next ⟩
isomgreqve
Metamath Proof Explorer
Ascii
Unicode
Theorem
isisomgr
Description:
Implications of two graphs being isomorphic.
(Contributed by
AV
, 11-Nov-2022)
Ref
Expression
Hypotheses
isomgr.v
⊢
V
=
Vtx
⁡
A
isomgr.w
⊢
W
=
Vtx
⁡
B
isomgr.i
⊢
I
=
iEdg
⁡
A
isomgr.j
⊢
J
=
iEdg
⁡
B
Assertion
isisomgr
⊢
A
IsomGr
B
→
∃
f
f
:
V
⟶
1-1 onto
W
∧
∃
g
g
:
dom
⁡
I
⟶
1-1 onto
dom
⁡
J
∧
∀
i
∈
dom
⁡
I
f
I
⁡
i
=
J
⁡
g
⁡
i
Proof
Step
Hyp
Ref
Expression
1
isomgr.v
⊢
V
=
Vtx
⁡
A
2
isomgr.w
⊢
W
=
Vtx
⁡
B
3
isomgr.i
⊢
I
=
iEdg
⁡
A
4
isomgr.j
⊢
J
=
iEdg
⁡
B
5
isomgrrel
⊢
Rel
⁡
IsomGr
6
5
brrelex12i
⊢
A
IsomGr
B
→
A
∈
V
∧
B
∈
V
7
1
2
3
4
isomgr
⊢
A
∈
V
∧
B
∈
V
→
A
IsomGr
B
↔
∃
f
f
:
V
⟶
1-1 onto
W
∧
∃
g
g
:
dom
⁡
I
⟶
1-1 onto
dom
⁡
J
∧
∀
i
∈
dom
⁡
I
f
I
⁡
i
=
J
⁡
g
⁡
i
8
6
7
syl
⊢
A
IsomGr
B
→
A
IsomGr
B
↔
∃
f
f
:
V
⟶
1-1 onto
W
∧
∃
g
g
:
dom
⁡
I
⟶
1-1 onto
dom
⁡
J
∧
∀
i
∈
dom
⁡
I
f
I
⁡
i
=
J
⁡
g
⁡
i
9
8
ibi
⊢
A
IsomGr
B
→
∃
f
f
:
V
⟶
1-1 onto
W
∧
∃
g
g
:
dom
⁡
I
⟶
1-1 onto
dom
⁡
J
∧
∀
i
∈
dom
⁡
I
f
I
⁡
i
=
J
⁡
g
⁡
i