Metamath Proof Explorer


Theorem isisomgr

Description: Implications of two graphs being isomorphic. (Contributed by AV, 11-Nov-2022)

Ref Expression
Hypotheses isomgr.v V=VtxA
isomgr.w W=VtxB
isomgr.i I=iEdgA
isomgr.j J=iEdgB
Assertion isisomgr AIsomGrBff:V1-1 ontoWgg:domI1-1 ontodomJidomIfIi=Jgi

Proof

Step Hyp Ref Expression
1 isomgr.v V=VtxA
2 isomgr.w W=VtxB
3 isomgr.i I=iEdgA
4 isomgr.j J=iEdgB
5 isomgrrel RelIsomGr
6 5 brrelex12i AIsomGrBAVBV
7 1 2 3 4 isomgr AVBVAIsomGrBff:V1-1 ontoWgg:domI1-1 ontodomJidomIfIi=Jgi
8 6 7 syl AIsomGrBAIsomGrBff:V1-1 ontoWgg:domI1-1 ontodomJidomIfIi=Jgi
9 8 ibi AIsomGrBff:V1-1 ontoWgg:domI1-1 ontodomJidomIfIi=Jgi