Metamath Proof Explorer


Theorem isomgreqve

Description: A set is isomorphic to a hypergraph if it has the same vertices and the same edges. (Contributed by AV, 11-Nov-2022)

Ref Expression
Assertion isomgreqve A UHGraph B Y Vtx A = Vtx B iEdg A = iEdg B A IsomGr B

Proof

Step Hyp Ref Expression
1 fvexd A UHGraph B Y Vtx A = Vtx B iEdg A = iEdg B Vtx B V
2 1 resiexd A UHGraph B Y Vtx A = Vtx B iEdg A = iEdg B I Vtx B V
3 f1oi I Vtx B : Vtx B 1-1 onto Vtx B
4 simprl A UHGraph B Y Vtx A = Vtx B iEdg A = iEdg B Vtx A = Vtx B
5 4 f1oeq2d A UHGraph B Y Vtx A = Vtx B iEdg A = iEdg B I Vtx B : Vtx A 1-1 onto Vtx B I Vtx B : Vtx B 1-1 onto Vtx B
6 3 5 mpbiri A UHGraph B Y Vtx A = Vtx B iEdg A = iEdg B I Vtx B : Vtx A 1-1 onto Vtx B
7 fvexd A UHGraph B Y Vtx A = Vtx B iEdg A = iEdg B iEdg B V
8 7 dmexd A UHGraph B Y Vtx A = Vtx B iEdg A = iEdg B dom iEdg B V
9 8 resiexd A UHGraph B Y Vtx A = Vtx B iEdg A = iEdg B I dom iEdg B V
10 f1oi I dom iEdg B : dom iEdg B 1-1 onto dom iEdg B
11 simprr A UHGraph B Y Vtx A = Vtx B iEdg A = iEdg B iEdg A = iEdg B
12 11 dmeqd A UHGraph B Y Vtx A = Vtx B iEdg A = iEdg B dom iEdg A = dom iEdg B
13 12 f1oeq2d A UHGraph B Y Vtx A = Vtx B iEdg A = iEdg B I dom iEdg B : dom iEdg A 1-1 onto dom iEdg B I dom iEdg B : dom iEdg B 1-1 onto dom iEdg B
14 10 13 mpbiri A UHGraph B Y Vtx A = Vtx B iEdg A = iEdg B I dom iEdg B : dom iEdg A 1-1 onto dom iEdg B
15 eqid Vtx A = Vtx A
16 eqid iEdg A = iEdg A
17 15 16 uhgrss A UHGraph i dom iEdg A iEdg A i Vtx A
18 17 ad4ant14 A UHGraph B Y Vtx A = Vtx B iEdg A = iEdg B i dom iEdg A iEdg A i Vtx A
19 sseq2 Vtx A = Vtx B iEdg A i Vtx A iEdg A i Vtx B
20 19 adantr Vtx A = Vtx B iEdg A = iEdg B iEdg A i Vtx A iEdg A i Vtx B
21 20 adantl A UHGraph B Y Vtx A = Vtx B iEdg A = iEdg B iEdg A i Vtx A iEdg A i Vtx B
22 21 adantr A UHGraph B Y Vtx A = Vtx B iEdg A = iEdg B i dom iEdg A iEdg A i Vtx A iEdg A i Vtx B
23 18 22 mpbid A UHGraph B Y Vtx A = Vtx B iEdg A = iEdg B i dom iEdg A iEdg A i Vtx B
24 resiima iEdg A i Vtx B I Vtx B iEdg A i = iEdg A i
25 23 24 syl A UHGraph B Y Vtx A = Vtx B iEdg A = iEdg B i dom iEdg A I Vtx B iEdg A i = iEdg A i
26 fvresi i dom iEdg A I dom iEdg A i = i
27 26 adantl A UHGraph B Y Vtx A = Vtx B iEdg A = iEdg B i dom iEdg A I dom iEdg A i = i
28 27 fveq2d A UHGraph B Y Vtx A = Vtx B iEdg A = iEdg B i dom iEdg A iEdg A I dom iEdg A i = iEdg A i
29 id iEdg A = iEdg B iEdg A = iEdg B
30 dmeq iEdg A = iEdg B dom iEdg A = dom iEdg B
31 30 reseq2d iEdg A = iEdg B I dom iEdg A = I dom iEdg B
32 31 fveq1d iEdg A = iEdg B I dom iEdg A i = I dom iEdg B i
33 29 32 fveq12d iEdg A = iEdg B iEdg A I dom iEdg A i = iEdg B I dom iEdg B i
34 33 adantl Vtx A = Vtx B iEdg A = iEdg B iEdg A I dom iEdg A i = iEdg B I dom iEdg B i
35 34 adantl A UHGraph B Y Vtx A = Vtx B iEdg A = iEdg B iEdg A I dom iEdg A i = iEdg B I dom iEdg B i
36 35 adantr A UHGraph B Y Vtx A = Vtx B iEdg A = iEdg B i dom iEdg A iEdg A I dom iEdg A i = iEdg B I dom iEdg B i
37 25 28 36 3eqtr2d A UHGraph B Y Vtx A = Vtx B iEdg A = iEdg B i dom iEdg A I Vtx B iEdg A i = iEdg B I dom iEdg B i
38 37 ralrimiva A UHGraph B Y Vtx A = Vtx B iEdg A = iEdg B i dom iEdg A I Vtx B iEdg A i = iEdg B I dom iEdg B i
39 14 38 jca A UHGraph B Y Vtx A = Vtx B iEdg A = iEdg B I dom iEdg B : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A I Vtx B iEdg A i = iEdg B I dom iEdg B i
40 f1oeq1 g = I dom iEdg B g : dom iEdg A 1-1 onto dom iEdg B I dom iEdg B : dom iEdg A 1-1 onto dom iEdg B
41 fveq1 g = I dom iEdg B g i = I dom iEdg B i
42 41 fveq2d g = I dom iEdg B iEdg B g i = iEdg B I dom iEdg B i
43 42 eqeq2d g = I dom iEdg B I Vtx B iEdg A i = iEdg B g i I Vtx B iEdg A i = iEdg B I dom iEdg B i
44 43 ralbidv g = I dom iEdg B i dom iEdg A I Vtx B iEdg A i = iEdg B g i i dom iEdg A I Vtx B iEdg A i = iEdg B I dom iEdg B i
45 40 44 anbi12d g = I dom iEdg B g : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A I Vtx B iEdg A i = iEdg B g i I dom iEdg B : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A I Vtx B iEdg A i = iEdg B I dom iEdg B i
46 9 39 45 spcedv A UHGraph B Y Vtx A = Vtx B iEdg A = iEdg B g g : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A I Vtx B iEdg A i = iEdg B g i
47 6 46 jca A UHGraph B Y Vtx A = Vtx B iEdg A = iEdg B I Vtx B : Vtx A 1-1 onto Vtx B g g : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A I Vtx B iEdg A i = iEdg B g i
48 f1oeq1 f = I Vtx B f : Vtx A 1-1 onto Vtx B I Vtx B : Vtx A 1-1 onto Vtx B
49 imaeq1 f = I Vtx B f iEdg A i = I Vtx B iEdg A i
50 49 eqeq1d f = I Vtx B f iEdg A i = iEdg B g i I Vtx B iEdg A i = iEdg B g i
51 50 ralbidv f = I Vtx B i dom iEdg A f iEdg A i = iEdg B g i i dom iEdg A I Vtx B iEdg A i = iEdg B g i
52 51 anbi2d f = I Vtx B g : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B g i g : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A I Vtx B iEdg A i = iEdg B g i
53 52 exbidv f = I Vtx B g g : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B g i g g : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A I Vtx B iEdg A i = iEdg B g i
54 48 53 anbi12d f = I Vtx B f : Vtx A 1-1 onto Vtx B g g : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B g i I Vtx B : Vtx A 1-1 onto Vtx B g g : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A I Vtx B iEdg A i = iEdg B g i
55 2 47 54 spcedv A UHGraph B Y Vtx A = Vtx B iEdg A = iEdg B f f : Vtx A 1-1 onto Vtx B g g : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B g i
56 eqid Vtx B = Vtx B
57 eqid iEdg B = iEdg B
58 15 56 16 57 isomgr A UHGraph B Y A IsomGr B f f : Vtx A 1-1 onto Vtx B g g : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B g i
59 58 adantr A UHGraph B Y Vtx A = Vtx B iEdg A = iEdg B A IsomGr B f f : Vtx A 1-1 onto Vtx B g g : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B g i
60 55 59 mpbird A UHGraph B Y Vtx A = Vtx B iEdg A = iEdg B A IsomGr B