Metamath Proof Explorer


Definition df-isomgr

Description: Define the isomorphy relation for graphs. (Contributed by AV, 11-Nov-2022)

Ref Expression
Assertion df-isomgr IsomGr=xy|ff:Vtxx1-1 ontoVtxygg:domiEdgx1-1 ontodomiEdgyidomiEdgxfiEdgxi=iEdgygi

Detailed syntax breakdown

Step Hyp Ref Expression
0 cisomgr classIsomGr
1 vx setvarx
2 vy setvary
3 vf setvarf
4 3 cv setvarf
5 cvtx classVtx
6 1 cv setvarx
7 6 5 cfv classVtxx
8 2 cv setvary
9 8 5 cfv classVtxy
10 7 9 4 wf1o wfff:Vtxx1-1 ontoVtxy
11 vg setvarg
12 11 cv setvarg
13 ciedg classiEdg
14 6 13 cfv classiEdgx
15 14 cdm classdomiEdgx
16 8 13 cfv classiEdgy
17 16 cdm classdomiEdgy
18 15 17 12 wf1o wffg:domiEdgx1-1 ontodomiEdgy
19 vi setvari
20 19 cv setvari
21 20 14 cfv classiEdgxi
22 4 21 cima classfiEdgxi
23 20 12 cfv classgi
24 23 16 cfv classiEdgygi
25 22 24 wceq wfffiEdgxi=iEdgygi
26 25 19 15 wral wffidomiEdgxfiEdgxi=iEdgygi
27 18 26 wa wffg:domiEdgx1-1 ontodomiEdgyidomiEdgxfiEdgxi=iEdgygi
28 27 11 wex wffgg:domiEdgx1-1 ontodomiEdgyidomiEdgxfiEdgxi=iEdgygi
29 10 28 wa wfff:Vtxx1-1 ontoVtxygg:domiEdgx1-1 ontodomiEdgyidomiEdgxfiEdgxi=iEdgygi
30 29 3 wex wffff:Vtxx1-1 ontoVtxygg:domiEdgx1-1 ontodomiEdgyidomiEdgxfiEdgxi=iEdgygi
31 30 1 2 copab classxy|ff:Vtxx1-1 ontoVtxygg:domiEdgx1-1 ontodomiEdgyidomiEdgxfiEdgxi=iEdgygi
32 0 31 wceq wffIsomGr=xy|ff:Vtxx1-1 ontoVtxygg:domiEdgx1-1 ontodomiEdgyidomiEdgxfiEdgxi=iEdgygi