Step |
Hyp |
Ref |
Expression |
0 |
|
cisomgr |
|- IsomGr |
1 |
|
vx |
|- x |
2 |
|
vy |
|- y |
3 |
|
vf |
|- f |
4 |
3
|
cv |
|- f |
5 |
|
cvtx |
|- Vtx |
6 |
1
|
cv |
|- x |
7 |
6 5
|
cfv |
|- ( Vtx ` x ) |
8 |
2
|
cv |
|- y |
9 |
8 5
|
cfv |
|- ( Vtx ` y ) |
10 |
7 9 4
|
wf1o |
|- f : ( Vtx ` x ) -1-1-onto-> ( Vtx ` y ) |
11 |
|
vg |
|- g |
12 |
11
|
cv |
|- g |
13 |
|
ciedg |
|- iEdg |
14 |
6 13
|
cfv |
|- ( iEdg ` x ) |
15 |
14
|
cdm |
|- dom ( iEdg ` x ) |
16 |
8 13
|
cfv |
|- ( iEdg ` y ) |
17 |
16
|
cdm |
|- dom ( iEdg ` y ) |
18 |
15 17 12
|
wf1o |
|- g : dom ( iEdg ` x ) -1-1-onto-> dom ( iEdg ` y ) |
19 |
|
vi |
|- i |
20 |
19
|
cv |
|- i |
21 |
20 14
|
cfv |
|- ( ( iEdg ` x ) ` i ) |
22 |
4 21
|
cima |
|- ( f " ( ( iEdg ` x ) ` i ) ) |
23 |
20 12
|
cfv |
|- ( g ` i ) |
24 |
23 16
|
cfv |
|- ( ( iEdg ` y ) ` ( g ` i ) ) |
25 |
22 24
|
wceq |
|- ( f " ( ( iEdg ` x ) ` i ) ) = ( ( iEdg ` y ) ` ( g ` i ) ) |
26 |
25 19 15
|
wral |
|- A. i e. dom ( iEdg ` x ) ( f " ( ( iEdg ` x ) ` i ) ) = ( ( iEdg ` y ) ` ( g ` i ) ) |
27 |
18 26
|
wa |
|- ( g : dom ( iEdg ` x ) -1-1-onto-> dom ( iEdg ` y ) /\ A. i e. dom ( iEdg ` x ) ( f " ( ( iEdg ` x ) ` i ) ) = ( ( iEdg ` y ) ` ( g ` i ) ) ) |
28 |
27 11
|
wex |
|- E. g ( g : dom ( iEdg ` x ) -1-1-onto-> dom ( iEdg ` y ) /\ A. i e. dom ( iEdg ` x ) ( f " ( ( iEdg ` x ) ` i ) ) = ( ( iEdg ` y ) ` ( g ` i ) ) ) |
29 |
10 28
|
wa |
|- ( f : ( Vtx ` x ) -1-1-onto-> ( Vtx ` y ) /\ E. g ( g : dom ( iEdg ` x ) -1-1-onto-> dom ( iEdg ` y ) /\ A. i e. dom ( iEdg ` x ) ( f " ( ( iEdg ` x ) ` i ) ) = ( ( iEdg ` y ) ` ( g ` i ) ) ) ) |
30 |
29 3
|
wex |
|- E. f ( f : ( Vtx ` x ) -1-1-onto-> ( Vtx ` y ) /\ E. g ( g : dom ( iEdg ` x ) -1-1-onto-> dom ( iEdg ` y ) /\ A. i e. dom ( iEdg ` x ) ( f " ( ( iEdg ` x ) ` i ) ) = ( ( iEdg ` y ) ` ( g ` i ) ) ) ) |
31 |
30 1 2
|
copab |
|- { <. x , y >. | E. f ( f : ( Vtx ` x ) -1-1-onto-> ( Vtx ` y ) /\ E. g ( g : dom ( iEdg ` x ) -1-1-onto-> dom ( iEdg ` y ) /\ A. i e. dom ( iEdg ` x ) ( f " ( ( iEdg ` x ) ` i ) ) = ( ( iEdg ` y ) ` ( g ` i ) ) ) ) } |
32 |
0 31
|
wceq |
|- IsomGr = { <. x , y >. | E. f ( f : ( Vtx ` x ) -1-1-onto-> ( Vtx ` y ) /\ E. g ( g : dom ( iEdg ` x ) -1-1-onto-> dom ( iEdg ` y ) /\ A. i e. dom ( iEdg ` x ) ( f " ( ( iEdg ` x ) ` i ) ) = ( ( iEdg ` y ) ` ( g ` i ) ) ) ) } |