Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Graph theory (extension)
Isomorphic graphs
isomgrrel
Next ⟩
isomgr
Metamath Proof Explorer
Ascii
Unicode
Theorem
isomgrrel
Description:
The isomorphy relation for graphs is a relation.
(Contributed by
AV
, 11-Nov-2022)
Ref
Expression
Assertion
isomgrrel
⊢
Rel
⁡
IsomGr
Proof
Step
Hyp
Ref
Expression
1
df-isomgr
⊢
IsomGr
=
x
y
|
∃
f
f
:
Vtx
⁡
x
⟶
1-1 onto
Vtx
⁡
y
∧
∃
g
g
:
dom
⁡
iEdg
⁡
x
⟶
1-1 onto
dom
⁡
iEdg
⁡
y
∧
∀
i
∈
dom
⁡
iEdg
⁡
x
f
iEdg
⁡
x
⁡
i
=
iEdg
⁡
y
⁡
g
⁡
i
2
1
relopabiv
⊢
Rel
⁡
IsomGr