Metamath Proof Explorer


Theorem isomgrrel

Description: The isomorphy relation for graphs is a relation. (Contributed by AV, 11-Nov-2022)

Ref Expression
Assertion isomgrrel Rel IsomGr

Proof

Step Hyp Ref Expression
1 df-isomgr IsomGr = x y | f f : Vtx x 1-1 onto Vtx y g g : dom iEdg x 1-1 onto dom iEdg y i dom iEdg x f iEdg x i = iEdg y g i
2 1 relopabiv Rel IsomGr