Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alexander van der Vekens
Graph theory (extension)
Isomorphic graphs
isomushgr
Next ⟩
isomuspgrlem1
Metamath Proof Explorer
Ascii
Unicode
Theorem
isomushgr
Description:
The isomorphy relation for two simple hypergraphs.
(Contributed by
AV
, 28-Nov-2022)
Ref
Expression
Hypotheses
isomushgr.v
⊢
V
=
Vtx
A
isomushgr.w
⊢
W
=
Vtx
B
isomushgr.e
⊢
E
=
Edg
A
isomushgr.k
⊢
K
=
Edg
B
Assertion
isomushgr
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
→
A
IsomGr
B
↔
∃
f
f
:
V
⟶
1-1 onto
W
∧
∃
g
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
Proof
Step
Hyp
Ref
Expression
1
isomushgr.v
⊢
V
=
Vtx
A
2
isomushgr.w
⊢
W
=
Vtx
B
3
isomushgr.e
⊢
E
=
Edg
A
4
isomushgr.k
⊢
K
=
Edg
B
5
eqid
⊢
iEdg
A
=
iEdg
A
6
eqid
⊢
iEdg
B
=
iEdg
B
7
1
2
5
6
isomgr
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
→
A
IsomGr
B
↔
∃
f
f
:
V
⟶
1-1 onto
W
∧
∃
h
h
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
h
i
8
fvex
⊢
iEdg
B
∈
V
9
vex
⊢
h
∈
V
10
fvex
⊢
iEdg
A
∈
V
11
10
cnvex
⊢
iEdg
A
-1
∈
V
12
9
11
coex
⊢
h
∘
iEdg
A
-1
∈
V
13
8
12
coex
⊢
iEdg
B
∘
h
∘
iEdg
A
-1
∈
V
14
13
a1i
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
h
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
h
i
→
iEdg
B
∘
h
∘
iEdg
A
-1
∈
V
15
2
6
ushgrf
⊢
B
∈
USHGraph
→
iEdg
B
:
dom
iEdg
B
⟶
1-1
𝒫
W
∖
∅
16
f1f1orn
⊢
iEdg
B
:
dom
iEdg
B
⟶
1-1
𝒫
W
∖
∅
→
iEdg
B
:
dom
iEdg
B
⟶
1-1 onto
ran
iEdg
B
17
15
16
syl
⊢
B
∈
USHGraph
→
iEdg
B
:
dom
iEdg
B
⟶
1-1 onto
ran
iEdg
B
18
edgval
⊢
Edg
B
=
ran
iEdg
B
19
4
18
eqtri
⊢
K
=
ran
iEdg
B
20
f1oeq3
⊢
K
=
ran
iEdg
B
→
iEdg
B
:
dom
iEdg
B
⟶
1-1 onto
K
↔
iEdg
B
:
dom
iEdg
B
⟶
1-1 onto
ran
iEdg
B
21
19
20
ax-mp
⊢
iEdg
B
:
dom
iEdg
B
⟶
1-1 onto
K
↔
iEdg
B
:
dom
iEdg
B
⟶
1-1 onto
ran
iEdg
B
22
17
21
sylibr
⊢
B
∈
USHGraph
→
iEdg
B
:
dom
iEdg
B
⟶
1-1 onto
K
23
22
ad3antlr
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
h
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
h
i
→
iEdg
B
:
dom
iEdg
B
⟶
1-1 onto
K
24
simprl
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
h
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
h
i
→
h
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
25
1
5
ushgrf
⊢
A
∈
USHGraph
→
iEdg
A
:
dom
iEdg
A
⟶
1-1
𝒫
V
∖
∅
26
f1f1orn
⊢
iEdg
A
:
dom
iEdg
A
⟶
1-1
𝒫
V
∖
∅
→
iEdg
A
:
dom
iEdg
A
⟶
1-1 onto
ran
iEdg
A
27
25
26
syl
⊢
A
∈
USHGraph
→
iEdg
A
:
dom
iEdg
A
⟶
1-1 onto
ran
iEdg
A
28
edgval
⊢
Edg
A
=
ran
iEdg
A
29
3
28
eqtri
⊢
E
=
ran
iEdg
A
30
f1oeq3
⊢
E
=
ran
iEdg
A
→
iEdg
A
:
dom
iEdg
A
⟶
1-1 onto
E
↔
iEdg
A
:
dom
iEdg
A
⟶
1-1 onto
ran
iEdg
A
31
29
30
ax-mp
⊢
iEdg
A
:
dom
iEdg
A
⟶
1-1 onto
E
↔
iEdg
A
:
dom
iEdg
A
⟶
1-1 onto
ran
iEdg
A
32
27
31
sylibr
⊢
A
∈
USHGraph
→
iEdg
A
:
dom
iEdg
A
⟶
1-1 onto
E
33
f1ocnv
⊢
iEdg
A
:
dom
iEdg
A
⟶
1-1 onto
E
→
iEdg
A
-1
:
E
⟶
1-1 onto
dom
iEdg
A
34
32
33
syl
⊢
A
∈
USHGraph
→
iEdg
A
-1
:
E
⟶
1-1 onto
dom
iEdg
A
35
34
ad3antrrr
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
h
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
h
i
→
iEdg
A
-1
:
E
⟶
1-1 onto
dom
iEdg
A
36
f1oco
⊢
h
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
iEdg
A
-1
:
E
⟶
1-1 onto
dom
iEdg
A
→
h
∘
iEdg
A
-1
:
E
⟶
1-1 onto
dom
iEdg
B
37
24
35
36
syl2anc
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
h
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
h
i
→
h
∘
iEdg
A
-1
:
E
⟶
1-1 onto
dom
iEdg
B
38
f1oco
⊢
iEdg
B
:
dom
iEdg
B
⟶
1-1 onto
K
∧
h
∘
iEdg
A
-1
:
E
⟶
1-1 onto
dom
iEdg
B
→
iEdg
B
∘
h
∘
iEdg
A
-1
:
E
⟶
1-1 onto
K
39
23
37
38
syl2anc
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
h
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
h
i
→
iEdg
B
∘
h
∘
iEdg
A
-1
:
E
⟶
1-1 onto
K
40
29
eleq2i
⊢
e
∈
E
↔
e
∈
ran
iEdg
A
41
f1fn
⊢
iEdg
A
:
dom
iEdg
A
⟶
1-1
𝒫
V
∖
∅
→
iEdg
A
Fn
dom
iEdg
A
42
25
41
syl
⊢
A
∈
USHGraph
→
iEdg
A
Fn
dom
iEdg
A
43
fvelrnb
⊢
iEdg
A
Fn
dom
iEdg
A
→
e
∈
ran
iEdg
A
↔
∃
j
∈
dom
iEdg
A
iEdg
A
j
=
e
44
42
43
syl
⊢
A
∈
USHGraph
→
e
∈
ran
iEdg
A
↔
∃
j
∈
dom
iEdg
A
iEdg
A
j
=
e
45
44
ad3antrrr
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
h
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
h
i
→
e
∈
ran
iEdg
A
↔
∃
j
∈
dom
iEdg
A
iEdg
A
j
=
e
46
fveq2
⊢
i
=
j
→
iEdg
A
i
=
iEdg
A
j
47
46
imaeq2d
⊢
i
=
j
→
f
iEdg
A
i
=
f
iEdg
A
j
48
2fveq3
⊢
i
=
j
→
iEdg
B
h
i
=
iEdg
B
h
j
49
47
48
eqeq12d
⊢
i
=
j
→
f
iEdg
A
i
=
iEdg
B
h
i
↔
f
iEdg
A
j
=
iEdg
B
h
j
50
49
rspccv
⊢
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
h
i
→
j
∈
dom
iEdg
A
→
f
iEdg
A
j
=
iEdg
B
h
j
51
50
ad2antll
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
h
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
h
i
→
j
∈
dom
iEdg
A
→
f
iEdg
A
j
=
iEdg
B
h
j
52
51
imp
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
h
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
h
i
∧
j
∈
dom
iEdg
A
→
f
iEdg
A
j
=
iEdg
B
h
j
53
coass
⊢
iEdg
B
∘
h
∘
iEdg
A
-1
=
iEdg
B
∘
h
∘
iEdg
A
-1
54
53
eqcomi
⊢
iEdg
B
∘
h
∘
iEdg
A
-1
=
iEdg
B
∘
h
∘
iEdg
A
-1
55
54
fveq1i
⊢
iEdg
B
∘
h
∘
iEdg
A
-1
iEdg
A
j
=
iEdg
B
∘
h
∘
iEdg
A
-1
iEdg
A
j
56
dff1o4
⊢
iEdg
A
:
dom
iEdg
A
⟶
1-1 onto
ran
iEdg
A
↔
iEdg
A
Fn
dom
iEdg
A
∧
iEdg
A
-1
Fn
ran
iEdg
A
57
27
56
sylib
⊢
A
∈
USHGraph
→
iEdg
A
Fn
dom
iEdg
A
∧
iEdg
A
-1
Fn
ran
iEdg
A
58
57
simprd
⊢
A
∈
USHGraph
→
iEdg
A
-1
Fn
ran
iEdg
A
59
58
ad4antr
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
h
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
h
i
∧
j
∈
dom
iEdg
A
→
iEdg
A
-1
Fn
ran
iEdg
A
60
f1of
⊢
iEdg
A
:
dom
iEdg
A
⟶
1-1 onto
ran
iEdg
A
→
iEdg
A
:
dom
iEdg
A
⟶
ran
iEdg
A
61
27
60
syl
⊢
A
∈
USHGraph
→
iEdg
A
:
dom
iEdg
A
⟶
ran
iEdg
A
62
61
ad3antrrr
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
h
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
h
i
→
iEdg
A
:
dom
iEdg
A
⟶
ran
iEdg
A
63
62
ffvelcdmda
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
h
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
h
i
∧
j
∈
dom
iEdg
A
→
iEdg
A
j
∈
ran
iEdg
A
64
fvco2
⊢
iEdg
A
-1
Fn
ran
iEdg
A
∧
iEdg
A
j
∈
ran
iEdg
A
→
iEdg
B
∘
h
∘
iEdg
A
-1
iEdg
A
j
=
iEdg
B
∘
h
iEdg
A
-1
iEdg
A
j
65
59
63
64
syl2anc
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
h
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
h
i
∧
j
∈
dom
iEdg
A
→
iEdg
B
∘
h
∘
iEdg
A
-1
iEdg
A
j
=
iEdg
B
∘
h
iEdg
A
-1
iEdg
A
j
66
32
ad3antrrr
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
h
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
h
i
→
iEdg
A
:
dom
iEdg
A
⟶
1-1 onto
E
67
f1ocnvfv1
⊢
iEdg
A
:
dom
iEdg
A
⟶
1-1 onto
E
∧
j
∈
dom
iEdg
A
→
iEdg
A
-1
iEdg
A
j
=
j
68
66
67
sylan
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
h
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
h
i
∧
j
∈
dom
iEdg
A
→
iEdg
A
-1
iEdg
A
j
=
j
69
68
fveq2d
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
h
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
h
i
∧
j
∈
dom
iEdg
A
→
iEdg
B
∘
h
iEdg
A
-1
iEdg
A
j
=
iEdg
B
∘
h
j
70
f1ofn
⊢
h
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
→
h
Fn
dom
iEdg
A
71
70
ad2antrl
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
h
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
h
i
→
h
Fn
dom
iEdg
A
72
fvco2
⊢
h
Fn
dom
iEdg
A
∧
j
∈
dom
iEdg
A
→
iEdg
B
∘
h
j
=
iEdg
B
h
j
73
71
72
sylan
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
h
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
h
i
∧
j
∈
dom
iEdg
A
→
iEdg
B
∘
h
j
=
iEdg
B
h
j
74
65
69
73
3eqtrd
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
h
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
h
i
∧
j
∈
dom
iEdg
A
→
iEdg
B
∘
h
∘
iEdg
A
-1
iEdg
A
j
=
iEdg
B
h
j
75
55
74
eqtr2id
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
h
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
h
i
∧
j
∈
dom
iEdg
A
→
iEdg
B
h
j
=
iEdg
B
∘
h
∘
iEdg
A
-1
iEdg
A
j
76
75
ad2antrr
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
h
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
h
i
∧
j
∈
dom
iEdg
A
∧
f
iEdg
A
j
=
iEdg
B
h
j
∧
iEdg
A
j
=
e
→
iEdg
B
h
j
=
iEdg
B
∘
h
∘
iEdg
A
-1
iEdg
A
j
77
imaeq2
⊢
e
=
iEdg
A
j
→
f
e
=
f
iEdg
A
j
78
77
eqcoms
⊢
iEdg
A
j
=
e
→
f
e
=
f
iEdg
A
j
79
simpr
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
h
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
h
i
∧
j
∈
dom
iEdg
A
∧
f
iEdg
A
j
=
iEdg
B
h
j
→
f
iEdg
A
j
=
iEdg
B
h
j
80
78
79
sylan9eqr
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
h
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
h
i
∧
j
∈
dom
iEdg
A
∧
f
iEdg
A
j
=
iEdg
B
h
j
∧
iEdg
A
j
=
e
→
f
e
=
iEdg
B
h
j
81
fveq2
⊢
e
=
iEdg
A
j
→
iEdg
B
∘
h
∘
iEdg
A
-1
e
=
iEdg
B
∘
h
∘
iEdg
A
-1
iEdg
A
j
82
81
eqcoms
⊢
iEdg
A
j
=
e
→
iEdg
B
∘
h
∘
iEdg
A
-1
e
=
iEdg
B
∘
h
∘
iEdg
A
-1
iEdg
A
j
83
82
adantl
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
h
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
h
i
∧
j
∈
dom
iEdg
A
∧
f
iEdg
A
j
=
iEdg
B
h
j
∧
iEdg
A
j
=
e
→
iEdg
B
∘
h
∘
iEdg
A
-1
e
=
iEdg
B
∘
h
∘
iEdg
A
-1
iEdg
A
j
84
76
80
83
3eqtr4d
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
h
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
h
i
∧
j
∈
dom
iEdg
A
∧
f
iEdg
A
j
=
iEdg
B
h
j
∧
iEdg
A
j
=
e
→
f
e
=
iEdg
B
∘
h
∘
iEdg
A
-1
e
85
84
ex
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
h
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
h
i
∧
j
∈
dom
iEdg
A
∧
f
iEdg
A
j
=
iEdg
B
h
j
→
iEdg
A
j
=
e
→
f
e
=
iEdg
B
∘
h
∘
iEdg
A
-1
e
86
52
85
mpdan
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
h
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
h
i
∧
j
∈
dom
iEdg
A
→
iEdg
A
j
=
e
→
f
e
=
iEdg
B
∘
h
∘
iEdg
A
-1
e
87
86
rexlimdva
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
h
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
h
i
→
∃
j
∈
dom
iEdg
A
iEdg
A
j
=
e
→
f
e
=
iEdg
B
∘
h
∘
iEdg
A
-1
e
88
45
87
sylbid
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
h
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
h
i
→
e
∈
ran
iEdg
A
→
f
e
=
iEdg
B
∘
h
∘
iEdg
A
-1
e
89
40
88
biimtrid
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
h
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
h
i
→
e
∈
E
→
f
e
=
iEdg
B
∘
h
∘
iEdg
A
-1
e
90
89
ralrimiv
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
h
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
h
i
→
∀
e
∈
E
f
e
=
iEdg
B
∘
h
∘
iEdg
A
-1
e
91
39
90
jca
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
h
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
h
i
→
iEdg
B
∘
h
∘
iEdg
A
-1
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
iEdg
B
∘
h
∘
iEdg
A
-1
e
92
f1oeq1
⊢
g
=
iEdg
B
∘
h
∘
iEdg
A
-1
→
g
:
E
⟶
1-1 onto
K
↔
iEdg
B
∘
h
∘
iEdg
A
-1
:
E
⟶
1-1 onto
K
93
fveq1
⊢
g
=
iEdg
B
∘
h
∘
iEdg
A
-1
→
g
e
=
iEdg
B
∘
h
∘
iEdg
A
-1
e
94
93
eqeq2d
⊢
g
=
iEdg
B
∘
h
∘
iEdg
A
-1
→
f
e
=
g
e
↔
f
e
=
iEdg
B
∘
h
∘
iEdg
A
-1
e
95
94
ralbidv
⊢
g
=
iEdg
B
∘
h
∘
iEdg
A
-1
→
∀
e
∈
E
f
e
=
g
e
↔
∀
e
∈
E
f
e
=
iEdg
B
∘
h
∘
iEdg
A
-1
e
96
92
95
anbi12d
⊢
g
=
iEdg
B
∘
h
∘
iEdg
A
-1
→
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
↔
iEdg
B
∘
h
∘
iEdg
A
-1
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
iEdg
B
∘
h
∘
iEdg
A
-1
e
97
14
91
96
spcedv
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
h
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
h
i
→
∃
g
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
98
97
ex
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
→
h
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
h
i
→
∃
g
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
99
98
exlimdv
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
→
∃
h
h
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
h
i
→
∃
g
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
100
8
cnvex
⊢
iEdg
B
-1
∈
V
101
vex
⊢
g
∈
V
102
101
10
coex
⊢
g
∘
iEdg
A
∈
V
103
100
102
coex
⊢
iEdg
B
-1
∘
g
∘
iEdg
A
∈
V
104
103
a1i
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
→
iEdg
B
-1
∘
g
∘
iEdg
A
∈
V
105
17
ad3antlr
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
→
iEdg
B
:
dom
iEdg
B
⟶
1-1 onto
ran
iEdg
B
106
f1ocnv
⊢
iEdg
B
:
dom
iEdg
B
⟶
1-1 onto
ran
iEdg
B
→
iEdg
B
-1
:
ran
iEdg
B
⟶
1-1 onto
dom
iEdg
B
107
105
106
syl
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
→
iEdg
B
-1
:
ran
iEdg
B
⟶
1-1 onto
dom
iEdg
B
108
f1oeq23
⊢
E
=
ran
iEdg
A
∧
K
=
ran
iEdg
B
→
g
:
E
⟶
1-1 onto
K
↔
g
:
ran
iEdg
A
⟶
1-1 onto
ran
iEdg
B
109
29
19
108
mp2an
⊢
g
:
E
⟶
1-1 onto
K
↔
g
:
ran
iEdg
A
⟶
1-1 onto
ran
iEdg
B
110
109
biimpi
⊢
g
:
E
⟶
1-1 onto
K
→
g
:
ran
iEdg
A
⟶
1-1 onto
ran
iEdg
B
111
110
ad2antrl
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
→
g
:
ran
iEdg
A
⟶
1-1 onto
ran
iEdg
B
112
27
ad3antrrr
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
→
iEdg
A
:
dom
iEdg
A
⟶
1-1 onto
ran
iEdg
A
113
f1oco
⊢
g
:
ran
iEdg
A
⟶
1-1 onto
ran
iEdg
B
∧
iEdg
A
:
dom
iEdg
A
⟶
1-1 onto
ran
iEdg
A
→
g
∘
iEdg
A
:
dom
iEdg
A
⟶
1-1 onto
ran
iEdg
B
114
111
112
113
syl2anc
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
→
g
∘
iEdg
A
:
dom
iEdg
A
⟶
1-1 onto
ran
iEdg
B
115
f1oco
⊢
iEdg
B
-1
:
ran
iEdg
B
⟶
1-1 onto
dom
iEdg
B
∧
g
∘
iEdg
A
:
dom
iEdg
A
⟶
1-1 onto
ran
iEdg
B
→
iEdg
B
-1
∘
g
∘
iEdg
A
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
116
107
114
115
syl2anc
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
→
iEdg
B
-1
∘
g
∘
iEdg
A
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
117
61
ad2antrr
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
→
iEdg
A
:
dom
iEdg
A
⟶
ran
iEdg
A
118
117
ffund
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
→
Fun
iEdg
A
119
118
adantr
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
→
Fun
iEdg
A
120
fvelrn
⊢
Fun
iEdg
A
∧
i
∈
dom
iEdg
A
→
iEdg
A
i
∈
ran
iEdg
A
121
119
120
sylan
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
i
∈
dom
iEdg
A
→
iEdg
A
i
∈
ran
iEdg
A
122
29
raleqi
⊢
∀
e
∈
E
f
e
=
g
e
↔
∀
e
∈
ran
iEdg
A
f
e
=
g
e
123
122
biimpi
⊢
∀
e
∈
E
f
e
=
g
e
→
∀
e
∈
ran
iEdg
A
f
e
=
g
e
124
123
ad2antll
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
→
∀
e
∈
ran
iEdg
A
f
e
=
g
e
125
124
adantr
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
i
∈
dom
iEdg
A
→
∀
e
∈
ran
iEdg
A
f
e
=
g
e
126
imaeq2
⊢
e
=
iEdg
A
i
→
f
e
=
f
iEdg
A
i
127
fveq2
⊢
e
=
iEdg
A
i
→
g
e
=
g
iEdg
A
i
128
126
127
eqeq12d
⊢
e
=
iEdg
A
i
→
f
e
=
g
e
↔
f
iEdg
A
i
=
g
iEdg
A
i
129
128
rspccva
⊢
∀
e
∈
ran
iEdg
A
f
e
=
g
e
∧
iEdg
A
i
∈
ran
iEdg
A
→
f
iEdg
A
i
=
g
iEdg
A
i
130
125
129
sylan
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
i
∈
dom
iEdg
A
∧
iEdg
A
i
∈
ran
iEdg
A
→
f
iEdg
A
i
=
g
iEdg
A
i
131
feq3
⊢
E
=
ran
iEdg
A
→
iEdg
A
:
dom
iEdg
A
⟶
E
↔
iEdg
A
:
dom
iEdg
A
⟶
ran
iEdg
A
132
29
131
ax-mp
⊢
iEdg
A
:
dom
iEdg
A
⟶
E
↔
iEdg
A
:
dom
iEdg
A
⟶
ran
iEdg
A
133
61
132
sylibr
⊢
A
∈
USHGraph
→
iEdg
A
:
dom
iEdg
A
⟶
E
134
133
ad2antrr
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
→
iEdg
A
:
dom
iEdg
A
⟶
E
135
f1ofn
⊢
g
:
E
⟶
1-1 onto
K
→
g
Fn
E
136
135
adantr
⊢
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
→
g
Fn
E
137
134
136
anim12ci
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
→
g
Fn
E
∧
iEdg
A
:
dom
iEdg
A
⟶
E
138
137
ad2antrr
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
i
∈
dom
iEdg
A
∧
iEdg
A
i
∈
ran
iEdg
A
→
g
Fn
E
∧
iEdg
A
:
dom
iEdg
A
⟶
E
139
fnfco
⊢
g
Fn
E
∧
iEdg
A
:
dom
iEdg
A
⟶
E
→
g
∘
iEdg
A
Fn
dom
iEdg
A
140
138
139
syl
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
i
∈
dom
iEdg
A
∧
iEdg
A
i
∈
ran
iEdg
A
→
g
∘
iEdg
A
Fn
dom
iEdg
A
141
simplr
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
i
∈
dom
iEdg
A
∧
iEdg
A
i
∈
ran
iEdg
A
→
i
∈
dom
iEdg
A
142
fvco2
⊢
g
∘
iEdg
A
Fn
dom
iEdg
A
∧
i
∈
dom
iEdg
A
→
I
↾
ran
iEdg
B
∘
g
∘
iEdg
A
i
=
I
↾
ran
iEdg
B
g
∘
iEdg
A
i
143
140
141
142
syl2anc
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
i
∈
dom
iEdg
A
∧
iEdg
A
i
∈
ran
iEdg
A
→
I
↾
ran
iEdg
B
∘
g
∘
iEdg
A
i
=
I
↾
ran
iEdg
B
g
∘
iEdg
A
i
144
f1of
⊢
iEdg
B
:
dom
iEdg
B
⟶
1-1 onto
K
→
iEdg
B
:
dom
iEdg
B
⟶
K
145
22
144
syl
⊢
B
∈
USHGraph
→
iEdg
B
:
dom
iEdg
B
⟶
K
146
145
ffund
⊢
B
∈
USHGraph
→
Fun
iEdg
B
147
funcocnv2
⊢
Fun
iEdg
B
→
iEdg
B
∘
iEdg
B
-1
=
I
↾
ran
iEdg
B
148
146
147
syl
⊢
B
∈
USHGraph
→
iEdg
B
∘
iEdg
B
-1
=
I
↾
ran
iEdg
B
149
148
eqcomd
⊢
B
∈
USHGraph
→
I
↾
ran
iEdg
B
=
iEdg
B
∘
iEdg
B
-1
150
149
ad5antlr
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
i
∈
dom
iEdg
A
∧
iEdg
A
i
∈
ran
iEdg
A
→
I
↾
ran
iEdg
B
=
iEdg
B
∘
iEdg
B
-1
151
150
coeq1d
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
i
∈
dom
iEdg
A
∧
iEdg
A
i
∈
ran
iEdg
A
→
I
↾
ran
iEdg
B
∘
g
∘
iEdg
A
=
iEdg
B
∘
iEdg
B
-1
∘
g
∘
iEdg
A
152
151
fveq1d
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
i
∈
dom
iEdg
A
∧
iEdg
A
i
∈
ran
iEdg
A
→
I
↾
ran
iEdg
B
∘
g
∘
iEdg
A
i
=
iEdg
B
∘
iEdg
B
-1
∘
g
∘
iEdg
A
i
153
coass
⊢
iEdg
B
∘
iEdg
B
-1
∘
g
∘
iEdg
A
=
iEdg
B
∘
iEdg
B
-1
∘
g
∘
iEdg
A
154
153
fveq1i
⊢
iEdg
B
∘
iEdg
B
-1
∘
g
∘
iEdg
A
i
=
iEdg
B
∘
iEdg
B
-1
∘
g
∘
iEdg
A
i
155
152
154
eqtrdi
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
i
∈
dom
iEdg
A
∧
iEdg
A
i
∈
ran
iEdg
A
→
I
↾
ran
iEdg
B
∘
g
∘
iEdg
A
i
=
iEdg
B
∘
iEdg
B
-1
∘
g
∘
iEdg
A
i
156
f1of
⊢
g
:
E
⟶
1-1 onto
K
→
g
:
E
⟶
K
157
eqid
⊢
E
=
E
158
157
19
feq23i
⊢
g
:
E
⟶
K
↔
g
:
E
⟶
ran
iEdg
B
159
156
158
sylib
⊢
g
:
E
⟶
1-1 onto
K
→
g
:
E
⟶
ran
iEdg
B
160
159
adantr
⊢
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
→
g
:
E
⟶
ran
iEdg
B
161
f1of
⊢
iEdg
A
:
dom
iEdg
A
⟶
1-1 onto
E
→
iEdg
A
:
dom
iEdg
A
⟶
E
162
32
161
syl
⊢
A
∈
USHGraph
→
iEdg
A
:
dom
iEdg
A
⟶
E
163
162
ad2antrr
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
→
iEdg
A
:
dom
iEdg
A
⟶
E
164
fco
⊢
g
:
E
⟶
ran
iEdg
B
∧
iEdg
A
:
dom
iEdg
A
⟶
E
→
g
∘
iEdg
A
:
dom
iEdg
A
⟶
ran
iEdg
B
165
160
163
164
syl2anr
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
→
g
∘
iEdg
A
:
dom
iEdg
A
⟶
ran
iEdg
B
166
165
anim1i
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
i
∈
dom
iEdg
A
→
g
∘
iEdg
A
:
dom
iEdg
A
⟶
ran
iEdg
B
∧
i
∈
dom
iEdg
A
167
166
adantr
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
i
∈
dom
iEdg
A
∧
iEdg
A
i
∈
ran
iEdg
A
→
g
∘
iEdg
A
:
dom
iEdg
A
⟶
ran
iEdg
B
∧
i
∈
dom
iEdg
A
168
ffvelcdm
⊢
g
∘
iEdg
A
:
dom
iEdg
A
⟶
ran
iEdg
B
∧
i
∈
dom
iEdg
A
→
g
∘
iEdg
A
i
∈
ran
iEdg
B
169
167
168
syl
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
i
∈
dom
iEdg
A
∧
iEdg
A
i
∈
ran
iEdg
A
→
g
∘
iEdg
A
i
∈
ran
iEdg
B
170
fvresi
⊢
g
∘
iEdg
A
i
∈
ran
iEdg
B
→
I
↾
ran
iEdg
B
g
∘
iEdg
A
i
=
g
∘
iEdg
A
i
171
169
170
syl
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
i
∈
dom
iEdg
A
∧
iEdg
A
i
∈
ran
iEdg
A
→
I
↾
ran
iEdg
B
g
∘
iEdg
A
i
=
g
∘
iEdg
A
i
172
162
ad3antrrr
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
→
iEdg
A
:
dom
iEdg
A
⟶
E
173
172
anim1i
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
i
∈
dom
iEdg
A
→
iEdg
A
:
dom
iEdg
A
⟶
E
∧
i
∈
dom
iEdg
A
174
173
adantr
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
i
∈
dom
iEdg
A
∧
iEdg
A
i
∈
ran
iEdg
A
→
iEdg
A
:
dom
iEdg
A
⟶
E
∧
i
∈
dom
iEdg
A
175
fvco3
⊢
iEdg
A
:
dom
iEdg
A
⟶
E
∧
i
∈
dom
iEdg
A
→
g
∘
iEdg
A
i
=
g
iEdg
A
i
176
174
175
syl
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
i
∈
dom
iEdg
A
∧
iEdg
A
i
∈
ran
iEdg
A
→
g
∘
iEdg
A
i
=
g
iEdg
A
i
177
171
176
eqtrd
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
i
∈
dom
iEdg
A
∧
iEdg
A
i
∈
ran
iEdg
A
→
I
↾
ran
iEdg
B
g
∘
iEdg
A
i
=
g
iEdg
A
i
178
143
155
177
3eqtr3rd
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
i
∈
dom
iEdg
A
∧
iEdg
A
i
∈
ran
iEdg
A
→
g
iEdg
A
i
=
iEdg
B
∘
iEdg
B
-1
∘
g
∘
iEdg
A
i
179
dff1o4
⊢
iEdg
B
:
dom
iEdg
B
⟶
1-1 onto
K
↔
iEdg
B
Fn
dom
iEdg
B
∧
iEdg
B
-1
Fn
K
180
22
179
sylib
⊢
B
∈
USHGraph
→
iEdg
B
Fn
dom
iEdg
B
∧
iEdg
B
-1
Fn
K
181
180
simprd
⊢
B
∈
USHGraph
→
iEdg
B
-1
Fn
K
182
181
ad5antlr
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
i
∈
dom
iEdg
A
∧
iEdg
A
i
∈
ran
iEdg
A
→
iEdg
B
-1
Fn
K
183
156
adantr
⊢
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
→
g
:
E
⟶
K
184
134
183
anim12ci
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
→
g
:
E
⟶
K
∧
iEdg
A
:
dom
iEdg
A
⟶
E
185
184
ad2antrr
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
i
∈
dom
iEdg
A
∧
iEdg
A
i
∈
ran
iEdg
A
→
g
:
E
⟶
K
∧
iEdg
A
:
dom
iEdg
A
⟶
E
186
fco
⊢
g
:
E
⟶
K
∧
iEdg
A
:
dom
iEdg
A
⟶
E
→
g
∘
iEdg
A
:
dom
iEdg
A
⟶
K
187
185
186
syl
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
i
∈
dom
iEdg
A
∧
iEdg
A
i
∈
ran
iEdg
A
→
g
∘
iEdg
A
:
dom
iEdg
A
⟶
K
188
fnfco
⊢
iEdg
B
-1
Fn
K
∧
g
∘
iEdg
A
:
dom
iEdg
A
⟶
K
→
iEdg
B
-1
∘
g
∘
iEdg
A
Fn
dom
iEdg
A
189
182
187
188
syl2anc
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
i
∈
dom
iEdg
A
∧
iEdg
A
i
∈
ran
iEdg
A
→
iEdg
B
-1
∘
g
∘
iEdg
A
Fn
dom
iEdg
A
190
fvco2
⊢
iEdg
B
-1
∘
g
∘
iEdg
A
Fn
dom
iEdg
A
∧
i
∈
dom
iEdg
A
→
iEdg
B
∘
iEdg
B
-1
∘
g
∘
iEdg
A
i
=
iEdg
B
iEdg
B
-1
∘
g
∘
iEdg
A
i
191
189
141
190
syl2anc
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
i
∈
dom
iEdg
A
∧
iEdg
A
i
∈
ran
iEdg
A
→
iEdg
B
∘
iEdg
B
-1
∘
g
∘
iEdg
A
i
=
iEdg
B
iEdg
B
-1
∘
g
∘
iEdg
A
i
192
130
178
191
3eqtrd
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
i
∈
dom
iEdg
A
∧
iEdg
A
i
∈
ran
iEdg
A
→
f
iEdg
A
i
=
iEdg
B
iEdg
B
-1
∘
g
∘
iEdg
A
i
193
121
192
mpdan
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
∧
i
∈
dom
iEdg
A
→
f
iEdg
A
i
=
iEdg
B
iEdg
B
-1
∘
g
∘
iEdg
A
i
194
193
ralrimiva
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
→
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
iEdg
B
-1
∘
g
∘
iEdg
A
i
195
116
194
jca
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
→
iEdg
B
-1
∘
g
∘
iEdg
A
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
iEdg
B
-1
∘
g
∘
iEdg
A
i
196
f1oeq1
⊢
h
=
iEdg
B
-1
∘
g
∘
iEdg
A
→
h
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
↔
iEdg
B
-1
∘
g
∘
iEdg
A
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
197
fveq1
⊢
h
=
iEdg
B
-1
∘
g
∘
iEdg
A
→
h
i
=
iEdg
B
-1
∘
g
∘
iEdg
A
i
198
197
fveq2d
⊢
h
=
iEdg
B
-1
∘
g
∘
iEdg
A
→
iEdg
B
h
i
=
iEdg
B
iEdg
B
-1
∘
g
∘
iEdg
A
i
199
198
eqeq2d
⊢
h
=
iEdg
B
-1
∘
g
∘
iEdg
A
→
f
iEdg
A
i
=
iEdg
B
h
i
↔
f
iEdg
A
i
=
iEdg
B
iEdg
B
-1
∘
g
∘
iEdg
A
i
200
199
ralbidv
⊢
h
=
iEdg
B
-1
∘
g
∘
iEdg
A
→
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
h
i
↔
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
iEdg
B
-1
∘
g
∘
iEdg
A
i
201
196
200
anbi12d
⊢
h
=
iEdg
B
-1
∘
g
∘
iEdg
A
→
h
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
h
i
↔
iEdg
B
-1
∘
g
∘
iEdg
A
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
iEdg
B
-1
∘
g
∘
iEdg
A
i
202
104
195
201
spcedv
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
∧
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
→
∃
h
h
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
h
i
203
202
ex
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
→
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
→
∃
h
h
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
h
i
204
203
exlimdv
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
→
∃
g
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
→
∃
h
h
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
h
i
205
99
204
impbid
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
∧
f
:
V
⟶
1-1 onto
W
→
∃
h
h
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
h
i
↔
∃
g
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
206
205
pm5.32da
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
→
f
:
V
⟶
1-1 onto
W
∧
∃
h
h
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
h
i
↔
f
:
V
⟶
1-1 onto
W
∧
∃
g
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
207
206
exbidv
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
→
∃
f
f
:
V
⟶
1-1 onto
W
∧
∃
h
h
:
dom
iEdg
A
⟶
1-1 onto
dom
iEdg
B
∧
∀
i
∈
dom
iEdg
A
f
iEdg
A
i
=
iEdg
B
h
i
↔
∃
f
f
:
V
⟶
1-1 onto
W
∧
∃
g
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e
208
7
207
bitrd
⊢
A
∈
USHGraph
∧
B
∈
USHGraph
→
A
IsomGr
B
↔
∃
f
f
:
V
⟶
1-1 onto
W
∧
∃
g
g
:
E
⟶
1-1 onto
K
∧
∀
e
∈
E
f
e
=
g
e