Metamath Proof Explorer


Theorem isomushgr

Description: The isomorphy relation for two simple hypergraphs. (Contributed by AV, 28-Nov-2022)

Ref Expression
Hypotheses isomushgr.v V = Vtx A
isomushgr.w W = Vtx B
isomushgr.e E = Edg A
isomushgr.k K = Edg B
Assertion isomushgr A USHGraph B USHGraph A IsomGr B f f : V 1-1 onto W g g : E 1-1 onto K e E f e = g e

Proof

Step Hyp Ref Expression
1 isomushgr.v V = Vtx A
2 isomushgr.w W = Vtx B
3 isomushgr.e E = Edg A
4 isomushgr.k K = Edg B
5 eqid iEdg A = iEdg A
6 eqid iEdg B = iEdg B
7 1 2 5 6 isomgr A USHGraph B USHGraph A IsomGr B f f : V 1-1 onto W h h : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B h i
8 fvex iEdg B V
9 vex h V
10 fvex iEdg A V
11 10 cnvex iEdg A -1 V
12 9 11 coex h iEdg A -1 V
13 8 12 coex iEdg B h iEdg A -1 V
14 13 a1i A USHGraph B USHGraph f : V 1-1 onto W h : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B h i iEdg B h iEdg A -1 V
15 2 6 ushgrf B USHGraph iEdg B : dom iEdg B 1-1 𝒫 W
16 f1f1orn iEdg B : dom iEdg B 1-1 𝒫 W iEdg B : dom iEdg B 1-1 onto ran iEdg B
17 15 16 syl B USHGraph iEdg B : dom iEdg B 1-1 onto ran iEdg B
18 edgval Edg B = ran iEdg B
19 4 18 eqtri K = ran iEdg B
20 f1oeq3 K = ran iEdg B iEdg B : dom iEdg B 1-1 onto K iEdg B : dom iEdg B 1-1 onto ran iEdg B
21 19 20 ax-mp iEdg B : dom iEdg B 1-1 onto K iEdg B : dom iEdg B 1-1 onto ran iEdg B
22 17 21 sylibr B USHGraph iEdg B : dom iEdg B 1-1 onto K
23 22 ad3antlr A USHGraph B USHGraph f : V 1-1 onto W h : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B h i iEdg B : dom iEdg B 1-1 onto K
24 simprl A USHGraph B USHGraph f : V 1-1 onto W h : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B h i h : dom iEdg A 1-1 onto dom iEdg B
25 1 5 ushgrf A USHGraph iEdg A : dom iEdg A 1-1 𝒫 V
26 f1f1orn iEdg A : dom iEdg A 1-1 𝒫 V iEdg A : dom iEdg A 1-1 onto ran iEdg A
27 25 26 syl A USHGraph iEdg A : dom iEdg A 1-1 onto ran iEdg A
28 edgval Edg A = ran iEdg A
29 3 28 eqtri E = ran iEdg A
30 f1oeq3 E = ran iEdg A iEdg A : dom iEdg A 1-1 onto E iEdg A : dom iEdg A 1-1 onto ran iEdg A
31 29 30 ax-mp iEdg A : dom iEdg A 1-1 onto E iEdg A : dom iEdg A 1-1 onto ran iEdg A
32 27 31 sylibr A USHGraph iEdg A : dom iEdg A 1-1 onto E
33 f1ocnv iEdg A : dom iEdg A 1-1 onto E iEdg A -1 : E 1-1 onto dom iEdg A
34 32 33 syl A USHGraph iEdg A -1 : E 1-1 onto dom iEdg A
35 34 ad3antrrr A USHGraph B USHGraph f : V 1-1 onto W h : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B h i iEdg A -1 : E 1-1 onto dom iEdg A
36 f1oco h : dom iEdg A 1-1 onto dom iEdg B iEdg A -1 : E 1-1 onto dom iEdg A h iEdg A -1 : E 1-1 onto dom iEdg B
37 24 35 36 syl2anc A USHGraph B USHGraph f : V 1-1 onto W h : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B h i h iEdg A -1 : E 1-1 onto dom iEdg B
38 f1oco iEdg B : dom iEdg B 1-1 onto K h iEdg A -1 : E 1-1 onto dom iEdg B iEdg B h iEdg A -1 : E 1-1 onto K
39 23 37 38 syl2anc A USHGraph B USHGraph f : V 1-1 onto W h : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B h i iEdg B h iEdg A -1 : E 1-1 onto K
40 29 eleq2i e E e ran iEdg A
41 f1fn iEdg A : dom iEdg A 1-1 𝒫 V iEdg A Fn dom iEdg A
42 25 41 syl A USHGraph iEdg A Fn dom iEdg A
43 fvelrnb iEdg A Fn dom iEdg A e ran iEdg A j dom iEdg A iEdg A j = e
44 42 43 syl A USHGraph e ran iEdg A j dom iEdg A iEdg A j = e
45 44 ad3antrrr A USHGraph B USHGraph f : V 1-1 onto W h : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B h i e ran iEdg A j dom iEdg A iEdg A j = e
46 fveq2 i = j iEdg A i = iEdg A j
47 46 imaeq2d i = j f iEdg A i = f iEdg A j
48 2fveq3 i = j iEdg B h i = iEdg B h j
49 47 48 eqeq12d i = j f iEdg A i = iEdg B h i f iEdg A j = iEdg B h j
50 49 rspccv i dom iEdg A f iEdg A i = iEdg B h i j dom iEdg A f iEdg A j = iEdg B h j
51 50 ad2antll A USHGraph B USHGraph f : V 1-1 onto W h : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B h i j dom iEdg A f iEdg A j = iEdg B h j
52 51 imp A USHGraph B USHGraph f : V 1-1 onto W h : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B h i j dom iEdg A f iEdg A j = iEdg B h j
53 coass iEdg B h iEdg A -1 = iEdg B h iEdg A -1
54 53 eqcomi iEdg B h iEdg A -1 = iEdg B h iEdg A -1
55 54 fveq1i iEdg B h iEdg A -1 iEdg A j = iEdg B h iEdg A -1 iEdg A j
56 dff1o4 iEdg A : dom iEdg A 1-1 onto ran iEdg A iEdg A Fn dom iEdg A iEdg A -1 Fn ran iEdg A
57 27 56 sylib A USHGraph iEdg A Fn dom iEdg A iEdg A -1 Fn ran iEdg A
58 57 simprd A USHGraph iEdg A -1 Fn ran iEdg A
59 58 ad4antr A USHGraph B USHGraph f : V 1-1 onto W h : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B h i j dom iEdg A iEdg A -1 Fn ran iEdg A
60 f1of iEdg A : dom iEdg A 1-1 onto ran iEdg A iEdg A : dom iEdg A ran iEdg A
61 27 60 syl A USHGraph iEdg A : dom iEdg A ran iEdg A
62 61 ad3antrrr A USHGraph B USHGraph f : V 1-1 onto W h : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B h i iEdg A : dom iEdg A ran iEdg A
63 62 ffvelrnda A USHGraph B USHGraph f : V 1-1 onto W h : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B h i j dom iEdg A iEdg A j ran iEdg A
64 fvco2 iEdg A -1 Fn ran iEdg A iEdg A j ran iEdg A iEdg B h iEdg A -1 iEdg A j = iEdg B h iEdg A -1 iEdg A j
65 59 63 64 syl2anc A USHGraph B USHGraph f : V 1-1 onto W h : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B h i j dom iEdg A iEdg B h iEdg A -1 iEdg A j = iEdg B h iEdg A -1 iEdg A j
66 32 ad3antrrr A USHGraph B USHGraph f : V 1-1 onto W h : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B h i iEdg A : dom iEdg A 1-1 onto E
67 f1ocnvfv1 iEdg A : dom iEdg A 1-1 onto E j dom iEdg A iEdg A -1 iEdg A j = j
68 66 67 sylan A USHGraph B USHGraph f : V 1-1 onto W h : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B h i j dom iEdg A iEdg A -1 iEdg A j = j
69 68 fveq2d A USHGraph B USHGraph f : V 1-1 onto W h : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B h i j dom iEdg A iEdg B h iEdg A -1 iEdg A j = iEdg B h j
70 f1ofn h : dom iEdg A 1-1 onto dom iEdg B h Fn dom iEdg A
71 70 ad2antrl A USHGraph B USHGraph f : V 1-1 onto W h : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B h i h Fn dom iEdg A
72 fvco2 h Fn dom iEdg A j dom iEdg A iEdg B h j = iEdg B h j
73 71 72 sylan A USHGraph B USHGraph f : V 1-1 onto W h : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B h i j dom iEdg A iEdg B h j = iEdg B h j
74 65 69 73 3eqtrd A USHGraph B USHGraph f : V 1-1 onto W h : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B h i j dom iEdg A iEdg B h iEdg A -1 iEdg A j = iEdg B h j
75 55 74 eqtr2id A USHGraph B USHGraph f : V 1-1 onto W h : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B h i j dom iEdg A iEdg B h j = iEdg B h iEdg A -1 iEdg A j
76 75 ad2antrr A USHGraph B USHGraph f : V 1-1 onto W h : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B h i j dom iEdg A f iEdg A j = iEdg B h j iEdg A j = e iEdg B h j = iEdg B h iEdg A -1 iEdg A j
77 imaeq2 e = iEdg A j f e = f iEdg A j
78 77 eqcoms iEdg A j = e f e = f iEdg A j
79 simpr A USHGraph B USHGraph f : V 1-1 onto W h : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B h i j dom iEdg A f iEdg A j = iEdg B h j f iEdg A j = iEdg B h j
80 78 79 sylan9eqr A USHGraph B USHGraph f : V 1-1 onto W h : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B h i j dom iEdg A f iEdg A j = iEdg B h j iEdg A j = e f e = iEdg B h j
81 fveq2 e = iEdg A j iEdg B h iEdg A -1 e = iEdg B h iEdg A -1 iEdg A j
82 81 eqcoms iEdg A j = e iEdg B h iEdg A -1 e = iEdg B h iEdg A -1 iEdg A j
83 82 adantl A USHGraph B USHGraph f : V 1-1 onto W h : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B h i j dom iEdg A f iEdg A j = iEdg B h j iEdg A j = e iEdg B h iEdg A -1 e = iEdg B h iEdg A -1 iEdg A j
84 76 80 83 3eqtr4d A USHGraph B USHGraph f : V 1-1 onto W h : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B h i j dom iEdg A f iEdg A j = iEdg B h j iEdg A j = e f e = iEdg B h iEdg A -1 e
85 84 ex A USHGraph B USHGraph f : V 1-1 onto W h : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B h i j dom iEdg A f iEdg A j = iEdg B h j iEdg A j = e f e = iEdg B h iEdg A -1 e
86 52 85 mpdan A USHGraph B USHGraph f : V 1-1 onto W h : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B h i j dom iEdg A iEdg A j = e f e = iEdg B h iEdg A -1 e
87 86 rexlimdva A USHGraph B USHGraph f : V 1-1 onto W h : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B h i j dom iEdg A iEdg A j = e f e = iEdg B h iEdg A -1 e
88 45 87 sylbid A USHGraph B USHGraph f : V 1-1 onto W h : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B h i e ran iEdg A f e = iEdg B h iEdg A -1 e
89 40 88 syl5bi A USHGraph B USHGraph f : V 1-1 onto W h : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B h i e E f e = iEdg B h iEdg A -1 e
90 89 ralrimiv A USHGraph B USHGraph f : V 1-1 onto W h : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B h i e E f e = iEdg B h iEdg A -1 e
91 39 90 jca A USHGraph B USHGraph f : V 1-1 onto W h : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B h i iEdg B h iEdg A -1 : E 1-1 onto K e E f e = iEdg B h iEdg A -1 e
92 f1oeq1 g = iEdg B h iEdg A -1 g : E 1-1 onto K iEdg B h iEdg A -1 : E 1-1 onto K
93 fveq1 g = iEdg B h iEdg A -1 g e = iEdg B h iEdg A -1 e
94 93 eqeq2d g = iEdg B h iEdg A -1 f e = g e f e = iEdg B h iEdg A -1 e
95 94 ralbidv g = iEdg B h iEdg A -1 e E f e = g e e E f e = iEdg B h iEdg A -1 e
96 92 95 anbi12d g = iEdg B h iEdg A -1 g : E 1-1 onto K e E f e = g e iEdg B h iEdg A -1 : E 1-1 onto K e E f e = iEdg B h iEdg A -1 e
97 14 91 96 spcedv A USHGraph B USHGraph f : V 1-1 onto W h : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B h i g g : E 1-1 onto K e E f e = g e
98 97 ex A USHGraph B USHGraph f : V 1-1 onto W h : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B h i g g : E 1-1 onto K e E f e = g e
99 98 exlimdv A USHGraph B USHGraph f : V 1-1 onto W h h : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B h i g g : E 1-1 onto K e E f e = g e
100 8 cnvex iEdg B -1 V
101 vex g V
102 101 10 coex g iEdg A V
103 100 102 coex iEdg B -1 g iEdg A V
104 103 a1i A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K e E f e = g e iEdg B -1 g iEdg A V
105 17 ad3antlr A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K e E f e = g e iEdg B : dom iEdg B 1-1 onto ran iEdg B
106 f1ocnv iEdg B : dom iEdg B 1-1 onto ran iEdg B iEdg B -1 : ran iEdg B 1-1 onto dom iEdg B
107 105 106 syl A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K e E f e = g e iEdg B -1 : ran iEdg B 1-1 onto dom iEdg B
108 f1oeq23 E = ran iEdg A K = ran iEdg B g : E 1-1 onto K g : ran iEdg A 1-1 onto ran iEdg B
109 29 19 108 mp2an g : E 1-1 onto K g : ran iEdg A 1-1 onto ran iEdg B
110 109 biimpi g : E 1-1 onto K g : ran iEdg A 1-1 onto ran iEdg B
111 110 ad2antrl A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K e E f e = g e g : ran iEdg A 1-1 onto ran iEdg B
112 27 ad3antrrr A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K e E f e = g e iEdg A : dom iEdg A 1-1 onto ran iEdg A
113 f1oco g : ran iEdg A 1-1 onto ran iEdg B iEdg A : dom iEdg A 1-1 onto ran iEdg A g iEdg A : dom iEdg A 1-1 onto ran iEdg B
114 111 112 113 syl2anc A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K e E f e = g e g iEdg A : dom iEdg A 1-1 onto ran iEdg B
115 f1oco iEdg B -1 : ran iEdg B 1-1 onto dom iEdg B g iEdg A : dom iEdg A 1-1 onto ran iEdg B iEdg B -1 g iEdg A : dom iEdg A 1-1 onto dom iEdg B
116 107 114 115 syl2anc A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K e E f e = g e iEdg B -1 g iEdg A : dom iEdg A 1-1 onto dom iEdg B
117 61 ad2antrr A USHGraph B USHGraph f : V 1-1 onto W iEdg A : dom iEdg A ran iEdg A
118 117 ffund A USHGraph B USHGraph f : V 1-1 onto W Fun iEdg A
119 118 adantr A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K e E f e = g e Fun iEdg A
120 fvelrn Fun iEdg A i dom iEdg A iEdg A i ran iEdg A
121 119 120 sylan A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K e E f e = g e i dom iEdg A iEdg A i ran iEdg A
122 29 raleqi e E f e = g e e ran iEdg A f e = g e
123 122 biimpi e E f e = g e e ran iEdg A f e = g e
124 123 ad2antll A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K e E f e = g e e ran iEdg A f e = g e
125 124 adantr A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K e E f e = g e i dom iEdg A e ran iEdg A f e = g e
126 imaeq2 e = iEdg A i f e = f iEdg A i
127 fveq2 e = iEdg A i g e = g iEdg A i
128 126 127 eqeq12d e = iEdg A i f e = g e f iEdg A i = g iEdg A i
129 128 rspccva e ran iEdg A f e = g e iEdg A i ran iEdg A f iEdg A i = g iEdg A i
130 125 129 sylan A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K e E f e = g e i dom iEdg A iEdg A i ran iEdg A f iEdg A i = g iEdg A i
131 feq3 E = ran iEdg A iEdg A : dom iEdg A E iEdg A : dom iEdg A ran iEdg A
132 29 131 ax-mp iEdg A : dom iEdg A E iEdg A : dom iEdg A ran iEdg A
133 61 132 sylibr A USHGraph iEdg A : dom iEdg A E
134 133 ad2antrr A USHGraph B USHGraph f : V 1-1 onto W iEdg A : dom iEdg A E
135 f1ofn g : E 1-1 onto K g Fn E
136 135 adantr g : E 1-1 onto K e E f e = g e g Fn E
137 134 136 anim12ci A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K e E f e = g e g Fn E iEdg A : dom iEdg A E
138 137 ad2antrr A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K e E f e = g e i dom iEdg A iEdg A i ran iEdg A g Fn E iEdg A : dom iEdg A E
139 fnfco g Fn E iEdg A : dom iEdg A E g iEdg A Fn dom iEdg A
140 138 139 syl A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K e E f e = g e i dom iEdg A iEdg A i ran iEdg A g iEdg A Fn dom iEdg A
141 simplr A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K e E f e = g e i dom iEdg A iEdg A i ran iEdg A i dom iEdg A
142 fvco2 g iEdg A Fn dom iEdg A i dom iEdg A I ran iEdg B g iEdg A i = I ran iEdg B g iEdg A i
143 140 141 142 syl2anc A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K e E f e = g e i dom iEdg A iEdg A i ran iEdg A I ran iEdg B g iEdg A i = I ran iEdg B g iEdg A i
144 f1of iEdg B : dom iEdg B 1-1 onto K iEdg B : dom iEdg B K
145 22 144 syl B USHGraph iEdg B : dom iEdg B K
146 145 ffund B USHGraph Fun iEdg B
147 funcocnv2 Fun iEdg B iEdg B iEdg B -1 = I ran iEdg B
148 146 147 syl B USHGraph iEdg B iEdg B -1 = I ran iEdg B
149 148 eqcomd B USHGraph I ran iEdg B = iEdg B iEdg B -1
150 149 ad5antlr A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K e E f e = g e i dom iEdg A iEdg A i ran iEdg A I ran iEdg B = iEdg B iEdg B -1
151 150 coeq1d A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K e E f e = g e i dom iEdg A iEdg A i ran iEdg A I ran iEdg B g iEdg A = iEdg B iEdg B -1 g iEdg A
152 151 fveq1d A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K e E f e = g e i dom iEdg A iEdg A i ran iEdg A I ran iEdg B g iEdg A i = iEdg B iEdg B -1 g iEdg A i
153 coass iEdg B iEdg B -1 g iEdg A = iEdg B iEdg B -1 g iEdg A
154 153 fveq1i iEdg B iEdg B -1 g iEdg A i = iEdg B iEdg B -1 g iEdg A i
155 152 154 eqtrdi A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K e E f e = g e i dom iEdg A iEdg A i ran iEdg A I ran iEdg B g iEdg A i = iEdg B iEdg B -1 g iEdg A i
156 f1of g : E 1-1 onto K g : E K
157 eqid E = E
158 157 19 feq23i g : E K g : E ran iEdg B
159 156 158 sylib g : E 1-1 onto K g : E ran iEdg B
160 159 adantr g : E 1-1 onto K e E f e = g e g : E ran iEdg B
161 f1of iEdg A : dom iEdg A 1-1 onto E iEdg A : dom iEdg A E
162 32 161 syl A USHGraph iEdg A : dom iEdg A E
163 162 ad2antrr A USHGraph B USHGraph f : V 1-1 onto W iEdg A : dom iEdg A E
164 fco g : E ran iEdg B iEdg A : dom iEdg A E g iEdg A : dom iEdg A ran iEdg B
165 160 163 164 syl2anr A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K e E f e = g e g iEdg A : dom iEdg A ran iEdg B
166 165 anim1i A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K e E f e = g e i dom iEdg A g iEdg A : dom iEdg A ran iEdg B i dom iEdg A
167 166 adantr A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K e E f e = g e i dom iEdg A iEdg A i ran iEdg A g iEdg A : dom iEdg A ran iEdg B i dom iEdg A
168 ffvelrn g iEdg A : dom iEdg A ran iEdg B i dom iEdg A g iEdg A i ran iEdg B
169 167 168 syl A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K e E f e = g e i dom iEdg A iEdg A i ran iEdg A g iEdg A i ran iEdg B
170 fvresi g iEdg A i ran iEdg B I ran iEdg B g iEdg A i = g iEdg A i
171 169 170 syl A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K e E f e = g e i dom iEdg A iEdg A i ran iEdg A I ran iEdg B g iEdg A i = g iEdg A i
172 162 ad3antrrr A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K e E f e = g e iEdg A : dom iEdg A E
173 172 anim1i A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K e E f e = g e i dom iEdg A iEdg A : dom iEdg A E i dom iEdg A
174 173 adantr A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K e E f e = g e i dom iEdg A iEdg A i ran iEdg A iEdg A : dom iEdg A E i dom iEdg A
175 fvco3 iEdg A : dom iEdg A E i dom iEdg A g iEdg A i = g iEdg A i
176 174 175 syl A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K e E f e = g e i dom iEdg A iEdg A i ran iEdg A g iEdg A i = g iEdg A i
177 171 176 eqtrd A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K e E f e = g e i dom iEdg A iEdg A i ran iEdg A I ran iEdg B g iEdg A i = g iEdg A i
178 143 155 177 3eqtr3rd A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K e E f e = g e i dom iEdg A iEdg A i ran iEdg A g iEdg A i = iEdg B iEdg B -1 g iEdg A i
179 dff1o4 iEdg B : dom iEdg B 1-1 onto K iEdg B Fn dom iEdg B iEdg B -1 Fn K
180 22 179 sylib B USHGraph iEdg B Fn dom iEdg B iEdg B -1 Fn K
181 180 simprd B USHGraph iEdg B -1 Fn K
182 181 ad5antlr A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K e E f e = g e i dom iEdg A iEdg A i ran iEdg A iEdg B -1 Fn K
183 156 adantr g : E 1-1 onto K e E f e = g e g : E K
184 134 183 anim12ci A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K e E f e = g e g : E K iEdg A : dom iEdg A E
185 184 ad2antrr A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K e E f e = g e i dom iEdg A iEdg A i ran iEdg A g : E K iEdg A : dom iEdg A E
186 fco g : E K iEdg A : dom iEdg A E g iEdg A : dom iEdg A K
187 185 186 syl A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K e E f e = g e i dom iEdg A iEdg A i ran iEdg A g iEdg A : dom iEdg A K
188 fnfco iEdg B -1 Fn K g iEdg A : dom iEdg A K iEdg B -1 g iEdg A Fn dom iEdg A
189 182 187 188 syl2anc A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K e E f e = g e i dom iEdg A iEdg A i ran iEdg A iEdg B -1 g iEdg A Fn dom iEdg A
190 fvco2 iEdg B -1 g iEdg A Fn dom iEdg A i dom iEdg A iEdg B iEdg B -1 g iEdg A i = iEdg B iEdg B -1 g iEdg A i
191 189 141 190 syl2anc A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K e E f e = g e i dom iEdg A iEdg A i ran iEdg A iEdg B iEdg B -1 g iEdg A i = iEdg B iEdg B -1 g iEdg A i
192 130 178 191 3eqtrd A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K e E f e = g e i dom iEdg A iEdg A i ran iEdg A f iEdg A i = iEdg B iEdg B -1 g iEdg A i
193 121 192 mpdan A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K e E f e = g e i dom iEdg A f iEdg A i = iEdg B iEdg B -1 g iEdg A i
194 193 ralrimiva A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K e E f e = g e i dom iEdg A f iEdg A i = iEdg B iEdg B -1 g iEdg A i
195 116 194 jca A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K e E f e = g e iEdg B -1 g iEdg A : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B iEdg B -1 g iEdg A i
196 f1oeq1 h = iEdg B -1 g iEdg A h : dom iEdg A 1-1 onto dom iEdg B iEdg B -1 g iEdg A : dom iEdg A 1-1 onto dom iEdg B
197 fveq1 h = iEdg B -1 g iEdg A h i = iEdg B -1 g iEdg A i
198 197 fveq2d h = iEdg B -1 g iEdg A iEdg B h i = iEdg B iEdg B -1 g iEdg A i
199 198 eqeq2d h = iEdg B -1 g iEdg A f iEdg A i = iEdg B h i f iEdg A i = iEdg B iEdg B -1 g iEdg A i
200 199 ralbidv h = iEdg B -1 g iEdg A i dom iEdg A f iEdg A i = iEdg B h i i dom iEdg A f iEdg A i = iEdg B iEdg B -1 g iEdg A i
201 196 200 anbi12d h = iEdg B -1 g iEdg A h : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B h i iEdg B -1 g iEdg A : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B iEdg B -1 g iEdg A i
202 104 195 201 spcedv A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K e E f e = g e h h : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B h i
203 202 ex A USHGraph B USHGraph f : V 1-1 onto W g : E 1-1 onto K e E f e = g e h h : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B h i
204 203 exlimdv A USHGraph B USHGraph f : V 1-1 onto W g g : E 1-1 onto K e E f e = g e h h : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B h i
205 99 204 impbid A USHGraph B USHGraph f : V 1-1 onto W h h : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B h i g g : E 1-1 onto K e E f e = g e
206 205 pm5.32da A USHGraph B USHGraph f : V 1-1 onto W h h : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B h i f : V 1-1 onto W g g : E 1-1 onto K e E f e = g e
207 206 exbidv A USHGraph B USHGraph f f : V 1-1 onto W h h : dom iEdg A 1-1 onto dom iEdg B i dom iEdg A f iEdg A i = iEdg B h i f f : V 1-1 onto W g g : E 1-1 onto K e E f e = g e
208 7 207 bitrd A USHGraph B USHGraph A IsomGr B f f : V 1-1 onto W g g : E 1-1 onto K e E f e = g e