Metamath Proof Explorer


Theorem f1oeq23

Description: Equality theorem for one-to-one onto functions. (Contributed by FL, 14-Jul-2012)

Ref Expression
Assertion f1oeq23 A=BC=DF:A1-1 ontoCF:B1-1 ontoD

Proof

Step Hyp Ref Expression
1 f1oeq2 A=BF:A1-1 ontoCF:B1-1 ontoC
2 f1oeq3 C=DF:B1-1 ontoCF:B1-1 ontoD
3 1 2 sylan9bb A=BC=DF:A1-1 ontoCF:B1-1 ontoD