Step |
Hyp |
Ref |
Expression |
1 |
|
fvexd |
|- ( ( ( A e. UHGraph /\ B e. Y ) /\ ( ( Vtx ` A ) = ( Vtx ` B ) /\ ( iEdg ` A ) = ( iEdg ` B ) ) ) -> ( Vtx ` B ) e. _V ) |
2 |
1
|
resiexd |
|- ( ( ( A e. UHGraph /\ B e. Y ) /\ ( ( Vtx ` A ) = ( Vtx ` B ) /\ ( iEdg ` A ) = ( iEdg ` B ) ) ) -> ( _I |` ( Vtx ` B ) ) e. _V ) |
3 |
|
f1oi |
|- ( _I |` ( Vtx ` B ) ) : ( Vtx ` B ) -1-1-onto-> ( Vtx ` B ) |
4 |
|
simprl |
|- ( ( ( A e. UHGraph /\ B e. Y ) /\ ( ( Vtx ` A ) = ( Vtx ` B ) /\ ( iEdg ` A ) = ( iEdg ` B ) ) ) -> ( Vtx ` A ) = ( Vtx ` B ) ) |
5 |
4
|
f1oeq2d |
|- ( ( ( A e. UHGraph /\ B e. Y ) /\ ( ( Vtx ` A ) = ( Vtx ` B ) /\ ( iEdg ` A ) = ( iEdg ` B ) ) ) -> ( ( _I |` ( Vtx ` B ) ) : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) <-> ( _I |` ( Vtx ` B ) ) : ( Vtx ` B ) -1-1-onto-> ( Vtx ` B ) ) ) |
6 |
3 5
|
mpbiri |
|- ( ( ( A e. UHGraph /\ B e. Y ) /\ ( ( Vtx ` A ) = ( Vtx ` B ) /\ ( iEdg ` A ) = ( iEdg ` B ) ) ) -> ( _I |` ( Vtx ` B ) ) : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) ) |
7 |
|
fvexd |
|- ( ( ( A e. UHGraph /\ B e. Y ) /\ ( ( Vtx ` A ) = ( Vtx ` B ) /\ ( iEdg ` A ) = ( iEdg ` B ) ) ) -> ( iEdg ` B ) e. _V ) |
8 |
7
|
dmexd |
|- ( ( ( A e. UHGraph /\ B e. Y ) /\ ( ( Vtx ` A ) = ( Vtx ` B ) /\ ( iEdg ` A ) = ( iEdg ` B ) ) ) -> dom ( iEdg ` B ) e. _V ) |
9 |
8
|
resiexd |
|- ( ( ( A e. UHGraph /\ B e. Y ) /\ ( ( Vtx ` A ) = ( Vtx ` B ) /\ ( iEdg ` A ) = ( iEdg ` B ) ) ) -> ( _I |` dom ( iEdg ` B ) ) e. _V ) |
10 |
|
f1oi |
|- ( _I |` dom ( iEdg ` B ) ) : dom ( iEdg ` B ) -1-1-onto-> dom ( iEdg ` B ) |
11 |
|
simprr |
|- ( ( ( A e. UHGraph /\ B e. Y ) /\ ( ( Vtx ` A ) = ( Vtx ` B ) /\ ( iEdg ` A ) = ( iEdg ` B ) ) ) -> ( iEdg ` A ) = ( iEdg ` B ) ) |
12 |
11
|
dmeqd |
|- ( ( ( A e. UHGraph /\ B e. Y ) /\ ( ( Vtx ` A ) = ( Vtx ` B ) /\ ( iEdg ` A ) = ( iEdg ` B ) ) ) -> dom ( iEdg ` A ) = dom ( iEdg ` B ) ) |
13 |
12
|
f1oeq2d |
|- ( ( ( A e. UHGraph /\ B e. Y ) /\ ( ( Vtx ` A ) = ( Vtx ` B ) /\ ( iEdg ` A ) = ( iEdg ` B ) ) ) -> ( ( _I |` dom ( iEdg ` B ) ) : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) <-> ( _I |` dom ( iEdg ` B ) ) : dom ( iEdg ` B ) -1-1-onto-> dom ( iEdg ` B ) ) ) |
14 |
10 13
|
mpbiri |
|- ( ( ( A e. UHGraph /\ B e. Y ) /\ ( ( Vtx ` A ) = ( Vtx ` B ) /\ ( iEdg ` A ) = ( iEdg ` B ) ) ) -> ( _I |` dom ( iEdg ` B ) ) : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) ) |
15 |
|
eqid |
|- ( Vtx ` A ) = ( Vtx ` A ) |
16 |
|
eqid |
|- ( iEdg ` A ) = ( iEdg ` A ) |
17 |
15 16
|
uhgrss |
|- ( ( A e. UHGraph /\ i e. dom ( iEdg ` A ) ) -> ( ( iEdg ` A ) ` i ) C_ ( Vtx ` A ) ) |
18 |
17
|
ad4ant14 |
|- ( ( ( ( A e. UHGraph /\ B e. Y ) /\ ( ( Vtx ` A ) = ( Vtx ` B ) /\ ( iEdg ` A ) = ( iEdg ` B ) ) ) /\ i e. dom ( iEdg ` A ) ) -> ( ( iEdg ` A ) ` i ) C_ ( Vtx ` A ) ) |
19 |
|
sseq2 |
|- ( ( Vtx ` A ) = ( Vtx ` B ) -> ( ( ( iEdg ` A ) ` i ) C_ ( Vtx ` A ) <-> ( ( iEdg ` A ) ` i ) C_ ( Vtx ` B ) ) ) |
20 |
19
|
adantr |
|- ( ( ( Vtx ` A ) = ( Vtx ` B ) /\ ( iEdg ` A ) = ( iEdg ` B ) ) -> ( ( ( iEdg ` A ) ` i ) C_ ( Vtx ` A ) <-> ( ( iEdg ` A ) ` i ) C_ ( Vtx ` B ) ) ) |
21 |
20
|
adantl |
|- ( ( ( A e. UHGraph /\ B e. Y ) /\ ( ( Vtx ` A ) = ( Vtx ` B ) /\ ( iEdg ` A ) = ( iEdg ` B ) ) ) -> ( ( ( iEdg ` A ) ` i ) C_ ( Vtx ` A ) <-> ( ( iEdg ` A ) ` i ) C_ ( Vtx ` B ) ) ) |
22 |
21
|
adantr |
|- ( ( ( ( A e. UHGraph /\ B e. Y ) /\ ( ( Vtx ` A ) = ( Vtx ` B ) /\ ( iEdg ` A ) = ( iEdg ` B ) ) ) /\ i e. dom ( iEdg ` A ) ) -> ( ( ( iEdg ` A ) ` i ) C_ ( Vtx ` A ) <-> ( ( iEdg ` A ) ` i ) C_ ( Vtx ` B ) ) ) |
23 |
18 22
|
mpbid |
|- ( ( ( ( A e. UHGraph /\ B e. Y ) /\ ( ( Vtx ` A ) = ( Vtx ` B ) /\ ( iEdg ` A ) = ( iEdg ` B ) ) ) /\ i e. dom ( iEdg ` A ) ) -> ( ( iEdg ` A ) ` i ) C_ ( Vtx ` B ) ) |
24 |
|
resiima |
|- ( ( ( iEdg ` A ) ` i ) C_ ( Vtx ` B ) -> ( ( _I |` ( Vtx ` B ) ) " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` A ) ` i ) ) |
25 |
23 24
|
syl |
|- ( ( ( ( A e. UHGraph /\ B e. Y ) /\ ( ( Vtx ` A ) = ( Vtx ` B ) /\ ( iEdg ` A ) = ( iEdg ` B ) ) ) /\ i e. dom ( iEdg ` A ) ) -> ( ( _I |` ( Vtx ` B ) ) " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` A ) ` i ) ) |
26 |
|
fvresi |
|- ( i e. dom ( iEdg ` A ) -> ( ( _I |` dom ( iEdg ` A ) ) ` i ) = i ) |
27 |
26
|
adantl |
|- ( ( ( ( A e. UHGraph /\ B e. Y ) /\ ( ( Vtx ` A ) = ( Vtx ` B ) /\ ( iEdg ` A ) = ( iEdg ` B ) ) ) /\ i e. dom ( iEdg ` A ) ) -> ( ( _I |` dom ( iEdg ` A ) ) ` i ) = i ) |
28 |
27
|
fveq2d |
|- ( ( ( ( A e. UHGraph /\ B e. Y ) /\ ( ( Vtx ` A ) = ( Vtx ` B ) /\ ( iEdg ` A ) = ( iEdg ` B ) ) ) /\ i e. dom ( iEdg ` A ) ) -> ( ( iEdg ` A ) ` ( ( _I |` dom ( iEdg ` A ) ) ` i ) ) = ( ( iEdg ` A ) ` i ) ) |
29 |
|
id |
|- ( ( iEdg ` A ) = ( iEdg ` B ) -> ( iEdg ` A ) = ( iEdg ` B ) ) |
30 |
|
dmeq |
|- ( ( iEdg ` A ) = ( iEdg ` B ) -> dom ( iEdg ` A ) = dom ( iEdg ` B ) ) |
31 |
30
|
reseq2d |
|- ( ( iEdg ` A ) = ( iEdg ` B ) -> ( _I |` dom ( iEdg ` A ) ) = ( _I |` dom ( iEdg ` B ) ) ) |
32 |
31
|
fveq1d |
|- ( ( iEdg ` A ) = ( iEdg ` B ) -> ( ( _I |` dom ( iEdg ` A ) ) ` i ) = ( ( _I |` dom ( iEdg ` B ) ) ` i ) ) |
33 |
29 32
|
fveq12d |
|- ( ( iEdg ` A ) = ( iEdg ` B ) -> ( ( iEdg ` A ) ` ( ( _I |` dom ( iEdg ` A ) ) ` i ) ) = ( ( iEdg ` B ) ` ( ( _I |` dom ( iEdg ` B ) ) ` i ) ) ) |
34 |
33
|
adantl |
|- ( ( ( Vtx ` A ) = ( Vtx ` B ) /\ ( iEdg ` A ) = ( iEdg ` B ) ) -> ( ( iEdg ` A ) ` ( ( _I |` dom ( iEdg ` A ) ) ` i ) ) = ( ( iEdg ` B ) ` ( ( _I |` dom ( iEdg ` B ) ) ` i ) ) ) |
35 |
34
|
adantl |
|- ( ( ( A e. UHGraph /\ B e. Y ) /\ ( ( Vtx ` A ) = ( Vtx ` B ) /\ ( iEdg ` A ) = ( iEdg ` B ) ) ) -> ( ( iEdg ` A ) ` ( ( _I |` dom ( iEdg ` A ) ) ` i ) ) = ( ( iEdg ` B ) ` ( ( _I |` dom ( iEdg ` B ) ) ` i ) ) ) |
36 |
35
|
adantr |
|- ( ( ( ( A e. UHGraph /\ B e. Y ) /\ ( ( Vtx ` A ) = ( Vtx ` B ) /\ ( iEdg ` A ) = ( iEdg ` B ) ) ) /\ i e. dom ( iEdg ` A ) ) -> ( ( iEdg ` A ) ` ( ( _I |` dom ( iEdg ` A ) ) ` i ) ) = ( ( iEdg ` B ) ` ( ( _I |` dom ( iEdg ` B ) ) ` i ) ) ) |
37 |
25 28 36
|
3eqtr2d |
|- ( ( ( ( A e. UHGraph /\ B e. Y ) /\ ( ( Vtx ` A ) = ( Vtx ` B ) /\ ( iEdg ` A ) = ( iEdg ` B ) ) ) /\ i e. dom ( iEdg ` A ) ) -> ( ( _I |` ( Vtx ` B ) ) " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( ( _I |` dom ( iEdg ` B ) ) ` i ) ) ) |
38 |
37
|
ralrimiva |
|- ( ( ( A e. UHGraph /\ B e. Y ) /\ ( ( Vtx ` A ) = ( Vtx ` B ) /\ ( iEdg ` A ) = ( iEdg ` B ) ) ) -> A. i e. dom ( iEdg ` A ) ( ( _I |` ( Vtx ` B ) ) " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( ( _I |` dom ( iEdg ` B ) ) ` i ) ) ) |
39 |
14 38
|
jca |
|- ( ( ( A e. UHGraph /\ B e. Y ) /\ ( ( Vtx ` A ) = ( Vtx ` B ) /\ ( iEdg ` A ) = ( iEdg ` B ) ) ) -> ( ( _I |` dom ( iEdg ` B ) ) : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( ( _I |` ( Vtx ` B ) ) " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( ( _I |` dom ( iEdg ` B ) ) ` i ) ) ) ) |
40 |
|
f1oeq1 |
|- ( g = ( _I |` dom ( iEdg ` B ) ) -> ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) <-> ( _I |` dom ( iEdg ` B ) ) : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) ) ) |
41 |
|
fveq1 |
|- ( g = ( _I |` dom ( iEdg ` B ) ) -> ( g ` i ) = ( ( _I |` dom ( iEdg ` B ) ) ` i ) ) |
42 |
41
|
fveq2d |
|- ( g = ( _I |` dom ( iEdg ` B ) ) -> ( ( iEdg ` B ) ` ( g ` i ) ) = ( ( iEdg ` B ) ` ( ( _I |` dom ( iEdg ` B ) ) ` i ) ) ) |
43 |
42
|
eqeq2d |
|- ( g = ( _I |` dom ( iEdg ` B ) ) -> ( ( ( _I |` ( Vtx ` B ) ) " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) <-> ( ( _I |` ( Vtx ` B ) ) " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( ( _I |` dom ( iEdg ` B ) ) ` i ) ) ) ) |
44 |
43
|
ralbidv |
|- ( g = ( _I |` dom ( iEdg ` B ) ) -> ( A. i e. dom ( iEdg ` A ) ( ( _I |` ( Vtx ` B ) ) " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) <-> A. i e. dom ( iEdg ` A ) ( ( _I |` ( Vtx ` B ) ) " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( ( _I |` dom ( iEdg ` B ) ) ` i ) ) ) ) |
45 |
40 44
|
anbi12d |
|- ( g = ( _I |` dom ( iEdg ` B ) ) -> ( ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( ( _I |` ( Vtx ` B ) ) " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) ) <-> ( ( _I |` dom ( iEdg ` B ) ) : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( ( _I |` ( Vtx ` B ) ) " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( ( _I |` dom ( iEdg ` B ) ) ` i ) ) ) ) ) |
46 |
9 39 45
|
spcedv |
|- ( ( ( A e. UHGraph /\ B e. Y ) /\ ( ( Vtx ` A ) = ( Vtx ` B ) /\ ( iEdg ` A ) = ( iEdg ` B ) ) ) -> E. g ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( ( _I |` ( Vtx ` B ) ) " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) ) ) |
47 |
6 46
|
jca |
|- ( ( ( A e. UHGraph /\ B e. Y ) /\ ( ( Vtx ` A ) = ( Vtx ` B ) /\ ( iEdg ` A ) = ( iEdg ` B ) ) ) -> ( ( _I |` ( Vtx ` B ) ) : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) /\ E. g ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( ( _I |` ( Vtx ` B ) ) " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) ) ) ) |
48 |
|
f1oeq1 |
|- ( f = ( _I |` ( Vtx ` B ) ) -> ( f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) <-> ( _I |` ( Vtx ` B ) ) : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) ) ) |
49 |
|
imaeq1 |
|- ( f = ( _I |` ( Vtx ` B ) ) -> ( f " ( ( iEdg ` A ) ` i ) ) = ( ( _I |` ( Vtx ` B ) ) " ( ( iEdg ` A ) ` i ) ) ) |
50 |
49
|
eqeq1d |
|- ( f = ( _I |` ( Vtx ` B ) ) -> ( ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) <-> ( ( _I |` ( Vtx ` B ) ) " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) ) ) |
51 |
50
|
ralbidv |
|- ( f = ( _I |` ( Vtx ` B ) ) -> ( A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) <-> A. i e. dom ( iEdg ` A ) ( ( _I |` ( Vtx ` B ) ) " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) ) ) |
52 |
51
|
anbi2d |
|- ( f = ( _I |` ( Vtx ` B ) ) -> ( ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) ) <-> ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( ( _I |` ( Vtx ` B ) ) " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) ) ) ) |
53 |
52
|
exbidv |
|- ( f = ( _I |` ( Vtx ` B ) ) -> ( E. g ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) ) <-> E. g ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( ( _I |` ( Vtx ` B ) ) " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) ) ) ) |
54 |
48 53
|
anbi12d |
|- ( f = ( _I |` ( Vtx ` B ) ) -> ( ( f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) /\ E. g ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) ) ) <-> ( ( _I |` ( Vtx ` B ) ) : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) /\ E. g ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( ( _I |` ( Vtx ` B ) ) " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) ) ) ) ) |
55 |
2 47 54
|
spcedv |
|- ( ( ( A e. UHGraph /\ B e. Y ) /\ ( ( Vtx ` A ) = ( Vtx ` B ) /\ ( iEdg ` A ) = ( iEdg ` B ) ) ) -> E. f ( f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) /\ E. g ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) ) ) ) |
56 |
|
eqid |
|- ( Vtx ` B ) = ( Vtx ` B ) |
57 |
|
eqid |
|- ( iEdg ` B ) = ( iEdg ` B ) |
58 |
15 56 16 57
|
isomgr |
|- ( ( A e. UHGraph /\ B e. Y ) -> ( A IsomGr B <-> E. f ( f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) /\ E. g ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) ) ) ) ) |
59 |
58
|
adantr |
|- ( ( ( A e. UHGraph /\ B e. Y ) /\ ( ( Vtx ` A ) = ( Vtx ` B ) /\ ( iEdg ` A ) = ( iEdg ` B ) ) ) -> ( A IsomGr B <-> E. f ( f : ( Vtx ` A ) -1-1-onto-> ( Vtx ` B ) /\ E. g ( g : dom ( iEdg ` A ) -1-1-onto-> dom ( iEdg ` B ) /\ A. i e. dom ( iEdg ` A ) ( f " ( ( iEdg ` A ) ` i ) ) = ( ( iEdg ` B ) ` ( g ` i ) ) ) ) ) ) |
60 |
55 59
|
mpbird |
|- ( ( ( A e. UHGraph /\ B e. Y ) /\ ( ( Vtx ` A ) = ( Vtx ` B ) /\ ( iEdg ` A ) = ( iEdg ` B ) ) ) -> A IsomGr B ) |