Step |
Hyp |
Ref |
Expression |
1 |
|
fvexd |
⊢ ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ ( ( Vtx ‘ 𝐴 ) = ( Vtx ‘ 𝐵 ) ∧ ( iEdg ‘ 𝐴 ) = ( iEdg ‘ 𝐵 ) ) ) → ( Vtx ‘ 𝐵 ) ∈ V ) |
2 |
1
|
resiexd |
⊢ ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ ( ( Vtx ‘ 𝐴 ) = ( Vtx ‘ 𝐵 ) ∧ ( iEdg ‘ 𝐴 ) = ( iEdg ‘ 𝐵 ) ) ) → ( I ↾ ( Vtx ‘ 𝐵 ) ) ∈ V ) |
3 |
|
f1oi |
⊢ ( I ↾ ( Vtx ‘ 𝐵 ) ) : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) |
4 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ ( ( Vtx ‘ 𝐴 ) = ( Vtx ‘ 𝐵 ) ∧ ( iEdg ‘ 𝐴 ) = ( iEdg ‘ 𝐵 ) ) ) → ( Vtx ‘ 𝐴 ) = ( Vtx ‘ 𝐵 ) ) |
5 |
4
|
f1oeq2d |
⊢ ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ ( ( Vtx ‘ 𝐴 ) = ( Vtx ‘ 𝐵 ) ∧ ( iEdg ‘ 𝐴 ) = ( iEdg ‘ 𝐵 ) ) ) → ( ( I ↾ ( Vtx ‘ 𝐵 ) ) : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ↔ ( I ↾ ( Vtx ‘ 𝐵 ) ) : ( Vtx ‘ 𝐵 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ) ) |
6 |
3 5
|
mpbiri |
⊢ ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ ( ( Vtx ‘ 𝐴 ) = ( Vtx ‘ 𝐵 ) ∧ ( iEdg ‘ 𝐴 ) = ( iEdg ‘ 𝐵 ) ) ) → ( I ↾ ( Vtx ‘ 𝐵 ) ) : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ) |
7 |
|
fvexd |
⊢ ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ ( ( Vtx ‘ 𝐴 ) = ( Vtx ‘ 𝐵 ) ∧ ( iEdg ‘ 𝐴 ) = ( iEdg ‘ 𝐵 ) ) ) → ( iEdg ‘ 𝐵 ) ∈ V ) |
8 |
7
|
dmexd |
⊢ ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ ( ( Vtx ‘ 𝐴 ) = ( Vtx ‘ 𝐵 ) ∧ ( iEdg ‘ 𝐴 ) = ( iEdg ‘ 𝐵 ) ) ) → dom ( iEdg ‘ 𝐵 ) ∈ V ) |
9 |
8
|
resiexd |
⊢ ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ ( ( Vtx ‘ 𝐴 ) = ( Vtx ‘ 𝐵 ) ∧ ( iEdg ‘ 𝐴 ) = ( iEdg ‘ 𝐵 ) ) ) → ( I ↾ dom ( iEdg ‘ 𝐵 ) ) ∈ V ) |
10 |
|
f1oi |
⊢ ( I ↾ dom ( iEdg ‘ 𝐵 ) ) : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) |
11 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ ( ( Vtx ‘ 𝐴 ) = ( Vtx ‘ 𝐵 ) ∧ ( iEdg ‘ 𝐴 ) = ( iEdg ‘ 𝐵 ) ) ) → ( iEdg ‘ 𝐴 ) = ( iEdg ‘ 𝐵 ) ) |
12 |
11
|
dmeqd |
⊢ ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ ( ( Vtx ‘ 𝐴 ) = ( Vtx ‘ 𝐵 ) ∧ ( iEdg ‘ 𝐴 ) = ( iEdg ‘ 𝐵 ) ) ) → dom ( iEdg ‘ 𝐴 ) = dom ( iEdg ‘ 𝐵 ) ) |
13 |
12
|
f1oeq2d |
⊢ ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ ( ( Vtx ‘ 𝐴 ) = ( Vtx ‘ 𝐵 ) ∧ ( iEdg ‘ 𝐴 ) = ( iEdg ‘ 𝐵 ) ) ) → ( ( I ↾ dom ( iEdg ‘ 𝐵 ) ) : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ↔ ( I ↾ dom ( iEdg ‘ 𝐵 ) ) : dom ( iEdg ‘ 𝐵 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ) ) |
14 |
10 13
|
mpbiri |
⊢ ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ ( ( Vtx ‘ 𝐴 ) = ( Vtx ‘ 𝐵 ) ∧ ( iEdg ‘ 𝐴 ) = ( iEdg ‘ 𝐵 ) ) ) → ( I ↾ dom ( iEdg ‘ 𝐵 ) ) : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ) |
15 |
|
eqid |
⊢ ( Vtx ‘ 𝐴 ) = ( Vtx ‘ 𝐴 ) |
16 |
|
eqid |
⊢ ( iEdg ‘ 𝐴 ) = ( iEdg ‘ 𝐴 ) |
17 |
15 16
|
uhgrss |
⊢ ( ( 𝐴 ∈ UHGraph ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ) → ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ⊆ ( Vtx ‘ 𝐴 ) ) |
18 |
17
|
ad4ant14 |
⊢ ( ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ ( ( Vtx ‘ 𝐴 ) = ( Vtx ‘ 𝐵 ) ∧ ( iEdg ‘ 𝐴 ) = ( iEdg ‘ 𝐵 ) ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ) → ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ⊆ ( Vtx ‘ 𝐴 ) ) |
19 |
|
sseq2 |
⊢ ( ( Vtx ‘ 𝐴 ) = ( Vtx ‘ 𝐵 ) → ( ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ⊆ ( Vtx ‘ 𝐴 ) ↔ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ⊆ ( Vtx ‘ 𝐵 ) ) ) |
20 |
19
|
adantr |
⊢ ( ( ( Vtx ‘ 𝐴 ) = ( Vtx ‘ 𝐵 ) ∧ ( iEdg ‘ 𝐴 ) = ( iEdg ‘ 𝐵 ) ) → ( ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ⊆ ( Vtx ‘ 𝐴 ) ↔ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ⊆ ( Vtx ‘ 𝐵 ) ) ) |
21 |
20
|
adantl |
⊢ ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ ( ( Vtx ‘ 𝐴 ) = ( Vtx ‘ 𝐵 ) ∧ ( iEdg ‘ 𝐴 ) = ( iEdg ‘ 𝐵 ) ) ) → ( ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ⊆ ( Vtx ‘ 𝐴 ) ↔ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ⊆ ( Vtx ‘ 𝐵 ) ) ) |
22 |
21
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ ( ( Vtx ‘ 𝐴 ) = ( Vtx ‘ 𝐵 ) ∧ ( iEdg ‘ 𝐴 ) = ( iEdg ‘ 𝐵 ) ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ) → ( ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ⊆ ( Vtx ‘ 𝐴 ) ↔ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ⊆ ( Vtx ‘ 𝐵 ) ) ) |
23 |
18 22
|
mpbid |
⊢ ( ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ ( ( Vtx ‘ 𝐴 ) = ( Vtx ‘ 𝐵 ) ∧ ( iEdg ‘ 𝐴 ) = ( iEdg ‘ 𝐵 ) ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ) → ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ⊆ ( Vtx ‘ 𝐵 ) ) |
24 |
|
resiima |
⊢ ( ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ⊆ ( Vtx ‘ 𝐵 ) → ( ( I ↾ ( Vtx ‘ 𝐵 ) ) “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) |
25 |
23 24
|
syl |
⊢ ( ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ ( ( Vtx ‘ 𝐴 ) = ( Vtx ‘ 𝐵 ) ∧ ( iEdg ‘ 𝐴 ) = ( iEdg ‘ 𝐵 ) ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ) → ( ( I ↾ ( Vtx ‘ 𝐵 ) ) “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) |
26 |
|
fvresi |
⊢ ( 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) → ( ( I ↾ dom ( iEdg ‘ 𝐴 ) ) ‘ 𝑖 ) = 𝑖 ) |
27 |
26
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ ( ( Vtx ‘ 𝐴 ) = ( Vtx ‘ 𝐵 ) ∧ ( iEdg ‘ 𝐴 ) = ( iEdg ‘ 𝐵 ) ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ) → ( ( I ↾ dom ( iEdg ‘ 𝐴 ) ) ‘ 𝑖 ) = 𝑖 ) |
28 |
27
|
fveq2d |
⊢ ( ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ ( ( Vtx ‘ 𝐴 ) = ( Vtx ‘ 𝐵 ) ∧ ( iEdg ‘ 𝐴 ) = ( iEdg ‘ 𝐵 ) ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ) → ( ( iEdg ‘ 𝐴 ) ‘ ( ( I ↾ dom ( iEdg ‘ 𝐴 ) ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) |
29 |
|
id |
⊢ ( ( iEdg ‘ 𝐴 ) = ( iEdg ‘ 𝐵 ) → ( iEdg ‘ 𝐴 ) = ( iEdg ‘ 𝐵 ) ) |
30 |
|
dmeq |
⊢ ( ( iEdg ‘ 𝐴 ) = ( iEdg ‘ 𝐵 ) → dom ( iEdg ‘ 𝐴 ) = dom ( iEdg ‘ 𝐵 ) ) |
31 |
30
|
reseq2d |
⊢ ( ( iEdg ‘ 𝐴 ) = ( iEdg ‘ 𝐵 ) → ( I ↾ dom ( iEdg ‘ 𝐴 ) ) = ( I ↾ dom ( iEdg ‘ 𝐵 ) ) ) |
32 |
31
|
fveq1d |
⊢ ( ( iEdg ‘ 𝐴 ) = ( iEdg ‘ 𝐵 ) → ( ( I ↾ dom ( iEdg ‘ 𝐴 ) ) ‘ 𝑖 ) = ( ( I ↾ dom ( iEdg ‘ 𝐵 ) ) ‘ 𝑖 ) ) |
33 |
29 32
|
fveq12d |
⊢ ( ( iEdg ‘ 𝐴 ) = ( iEdg ‘ 𝐵 ) → ( ( iEdg ‘ 𝐴 ) ‘ ( ( I ↾ dom ( iEdg ‘ 𝐴 ) ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ( I ↾ dom ( iEdg ‘ 𝐵 ) ) ‘ 𝑖 ) ) ) |
34 |
33
|
adantl |
⊢ ( ( ( Vtx ‘ 𝐴 ) = ( Vtx ‘ 𝐵 ) ∧ ( iEdg ‘ 𝐴 ) = ( iEdg ‘ 𝐵 ) ) → ( ( iEdg ‘ 𝐴 ) ‘ ( ( I ↾ dom ( iEdg ‘ 𝐴 ) ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ( I ↾ dom ( iEdg ‘ 𝐵 ) ) ‘ 𝑖 ) ) ) |
35 |
34
|
adantl |
⊢ ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ ( ( Vtx ‘ 𝐴 ) = ( Vtx ‘ 𝐵 ) ∧ ( iEdg ‘ 𝐴 ) = ( iEdg ‘ 𝐵 ) ) ) → ( ( iEdg ‘ 𝐴 ) ‘ ( ( I ↾ dom ( iEdg ‘ 𝐴 ) ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ( I ↾ dom ( iEdg ‘ 𝐵 ) ) ‘ 𝑖 ) ) ) |
36 |
35
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ ( ( Vtx ‘ 𝐴 ) = ( Vtx ‘ 𝐵 ) ∧ ( iEdg ‘ 𝐴 ) = ( iEdg ‘ 𝐵 ) ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ) → ( ( iEdg ‘ 𝐴 ) ‘ ( ( I ↾ dom ( iEdg ‘ 𝐴 ) ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ( I ↾ dom ( iEdg ‘ 𝐵 ) ) ‘ 𝑖 ) ) ) |
37 |
25 28 36
|
3eqtr2d |
⊢ ( ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ ( ( Vtx ‘ 𝐴 ) = ( Vtx ‘ 𝐵 ) ∧ ( iEdg ‘ 𝐴 ) = ( iEdg ‘ 𝐵 ) ) ) ∧ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ) → ( ( I ↾ ( Vtx ‘ 𝐵 ) ) “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ( I ↾ dom ( iEdg ‘ 𝐵 ) ) ‘ 𝑖 ) ) ) |
38 |
37
|
ralrimiva |
⊢ ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ ( ( Vtx ‘ 𝐴 ) = ( Vtx ‘ 𝐵 ) ∧ ( iEdg ‘ 𝐴 ) = ( iEdg ‘ 𝐵 ) ) ) → ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( ( I ↾ ( Vtx ‘ 𝐵 ) ) “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ( I ↾ dom ( iEdg ‘ 𝐵 ) ) ‘ 𝑖 ) ) ) |
39 |
14 38
|
jca |
⊢ ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ ( ( Vtx ‘ 𝐴 ) = ( Vtx ‘ 𝐵 ) ∧ ( iEdg ‘ 𝐴 ) = ( iEdg ‘ 𝐵 ) ) ) → ( ( I ↾ dom ( iEdg ‘ 𝐵 ) ) : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( ( I ↾ ( Vtx ‘ 𝐵 ) ) “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ( I ↾ dom ( iEdg ‘ 𝐵 ) ) ‘ 𝑖 ) ) ) ) |
40 |
|
f1oeq1 |
⊢ ( 𝑔 = ( I ↾ dom ( iEdg ‘ 𝐵 ) ) → ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ↔ ( I ↾ dom ( iEdg ‘ 𝐵 ) ) : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ) ) |
41 |
|
fveq1 |
⊢ ( 𝑔 = ( I ↾ dom ( iEdg ‘ 𝐵 ) ) → ( 𝑔 ‘ 𝑖 ) = ( ( I ↾ dom ( iEdg ‘ 𝐵 ) ) ‘ 𝑖 ) ) |
42 |
41
|
fveq2d |
⊢ ( 𝑔 = ( I ↾ dom ( iEdg ‘ 𝐵 ) ) → ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ( I ↾ dom ( iEdg ‘ 𝐵 ) ) ‘ 𝑖 ) ) ) |
43 |
42
|
eqeq2d |
⊢ ( 𝑔 = ( I ↾ dom ( iEdg ‘ 𝐵 ) ) → ( ( ( I ↾ ( Vtx ‘ 𝐵 ) ) “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ↔ ( ( I ↾ ( Vtx ‘ 𝐵 ) ) “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ( I ↾ dom ( iEdg ‘ 𝐵 ) ) ‘ 𝑖 ) ) ) ) |
44 |
43
|
ralbidv |
⊢ ( 𝑔 = ( I ↾ dom ( iEdg ‘ 𝐵 ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( ( I ↾ ( Vtx ‘ 𝐵 ) ) “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ↔ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( ( I ↾ ( Vtx ‘ 𝐵 ) ) “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ( I ↾ dom ( iEdg ‘ 𝐵 ) ) ‘ 𝑖 ) ) ) ) |
45 |
40 44
|
anbi12d |
⊢ ( 𝑔 = ( I ↾ dom ( iEdg ‘ 𝐵 ) ) → ( ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( ( I ↾ ( Vtx ‘ 𝐵 ) ) “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ↔ ( ( I ↾ dom ( iEdg ‘ 𝐵 ) ) : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( ( I ↾ ( Vtx ‘ 𝐵 ) ) “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( ( I ↾ dom ( iEdg ‘ 𝐵 ) ) ‘ 𝑖 ) ) ) ) ) |
46 |
9 39 45
|
spcedv |
⊢ ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ ( ( Vtx ‘ 𝐴 ) = ( Vtx ‘ 𝐵 ) ∧ ( iEdg ‘ 𝐴 ) = ( iEdg ‘ 𝐵 ) ) ) → ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( ( I ↾ ( Vtx ‘ 𝐵 ) ) “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) |
47 |
6 46
|
jca |
⊢ ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ ( ( Vtx ‘ 𝐴 ) = ( Vtx ‘ 𝐵 ) ∧ ( iEdg ‘ 𝐴 ) = ( iEdg ‘ 𝐵 ) ) ) → ( ( I ↾ ( Vtx ‘ 𝐵 ) ) : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( ( I ↾ ( Vtx ‘ 𝐵 ) ) “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) |
48 |
|
f1oeq1 |
⊢ ( 𝑓 = ( I ↾ ( Vtx ‘ 𝐵 ) ) → ( 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ↔ ( I ↾ ( Vtx ‘ 𝐵 ) ) : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ) ) |
49 |
|
imaeq1 |
⊢ ( 𝑓 = ( I ↾ ( Vtx ‘ 𝐵 ) ) → ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( I ↾ ( Vtx ‘ 𝐵 ) ) “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) ) |
50 |
49
|
eqeq1d |
⊢ ( 𝑓 = ( I ↾ ( Vtx ‘ 𝐵 ) ) → ( ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ↔ ( ( I ↾ ( Vtx ‘ 𝐵 ) ) “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) |
51 |
50
|
ralbidv |
⊢ ( 𝑓 = ( I ↾ ( Vtx ‘ 𝐵 ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ↔ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( ( I ↾ ( Vtx ‘ 𝐵 ) ) “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) |
52 |
51
|
anbi2d |
⊢ ( 𝑓 = ( I ↾ ( Vtx ‘ 𝐵 ) ) → ( ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ↔ ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( ( I ↾ ( Vtx ‘ 𝐵 ) ) “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) |
53 |
52
|
exbidv |
⊢ ( 𝑓 = ( I ↾ ( Vtx ‘ 𝐵 ) ) → ( ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ↔ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( ( I ↾ ( Vtx ‘ 𝐵 ) ) “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) |
54 |
48 53
|
anbi12d |
⊢ ( 𝑓 = ( I ↾ ( Vtx ‘ 𝐵 ) ) → ( ( 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ↔ ( ( I ↾ ( Vtx ‘ 𝐵 ) ) : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( ( I ↾ ( Vtx ‘ 𝐵 ) ) “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |
55 |
2 47 54
|
spcedv |
⊢ ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ ( ( Vtx ‘ 𝐴 ) = ( Vtx ‘ 𝐵 ) ∧ ( iEdg ‘ 𝐴 ) = ( iEdg ‘ 𝐵 ) ) ) → ∃ 𝑓 ( 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) |
56 |
|
eqid |
⊢ ( Vtx ‘ 𝐵 ) = ( Vtx ‘ 𝐵 ) |
57 |
|
eqid |
⊢ ( iEdg ‘ 𝐵 ) = ( iEdg ‘ 𝐵 ) |
58 |
15 56 16 57
|
isomgr |
⊢ ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) → ( 𝐴 IsomGr 𝐵 ↔ ∃ 𝑓 ( 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |
59 |
58
|
adantr |
⊢ ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ ( ( Vtx ‘ 𝐴 ) = ( Vtx ‘ 𝐵 ) ∧ ( iEdg ‘ 𝐴 ) = ( iEdg ‘ 𝐵 ) ) ) → ( 𝐴 IsomGr 𝐵 ↔ ∃ 𝑓 ( 𝑓 : ( Vtx ‘ 𝐴 ) –1-1-onto→ ( Vtx ‘ 𝐵 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐴 ) –1-1-onto→ dom ( iEdg ‘ 𝐵 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐴 ) ( 𝑓 “ ( ( iEdg ‘ 𝐴 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐵 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |
60 |
55 59
|
mpbird |
⊢ ( ( ( 𝐴 ∈ UHGraph ∧ 𝐵 ∈ 𝑌 ) ∧ ( ( Vtx ‘ 𝐴 ) = ( Vtx ‘ 𝐵 ) ∧ ( iEdg ‘ 𝐴 ) = ( iEdg ‘ 𝐵 ) ) ) → 𝐴 IsomGr 𝐵 ) |