Description: Implications of two graphs being isomorphic. (Contributed by AV, 11-Nov-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isomgr.v | |- V = ( Vtx ` A ) |
|
isomgr.w | |- W = ( Vtx ` B ) |
||
isomgr.i | |- I = ( iEdg ` A ) |
||
isomgr.j | |- J = ( iEdg ` B ) |
||
Assertion | isisomgr | |- ( A IsomGr B -> E. f ( f : V -1-1-onto-> W /\ E. g ( g : dom I -1-1-onto-> dom J /\ A. i e. dom I ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isomgr.v | |- V = ( Vtx ` A ) |
|
2 | isomgr.w | |- W = ( Vtx ` B ) |
|
3 | isomgr.i | |- I = ( iEdg ` A ) |
|
4 | isomgr.j | |- J = ( iEdg ` B ) |
|
5 | isomgrrel | |- Rel IsomGr |
|
6 | 5 | brrelex12i | |- ( A IsomGr B -> ( A e. _V /\ B e. _V ) ) |
7 | 1 2 3 4 | isomgr | |- ( ( A e. _V /\ B e. _V ) -> ( A IsomGr B <-> E. f ( f : V -1-1-onto-> W /\ E. g ( g : dom I -1-1-onto-> dom J /\ A. i e. dom I ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) |
8 | 6 7 | syl | |- ( A IsomGr B -> ( A IsomGr B <-> E. f ( f : V -1-1-onto-> W /\ E. g ( g : dom I -1-1-onto-> dom J /\ A. i e. dom I ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) ) |
9 | 8 | ibi | |- ( A IsomGr B -> E. f ( f : V -1-1-onto-> W /\ E. g ( g : dom I -1-1-onto-> dom J /\ A. i e. dom I ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) |