Metamath Proof Explorer


Theorem isisomgr

Description: Implications of two graphs being isomorphic. (Contributed by AV, 11-Nov-2022)

Ref Expression
Hypotheses isomgr.v
|- V = ( Vtx ` A )
isomgr.w
|- W = ( Vtx ` B )
isomgr.i
|- I = ( iEdg ` A )
isomgr.j
|- J = ( iEdg ` B )
Assertion isisomgr
|- ( A IsomGr B -> E. f ( f : V -1-1-onto-> W /\ E. g ( g : dom I -1-1-onto-> dom J /\ A. i e. dom I ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) )

Proof

Step Hyp Ref Expression
1 isomgr.v
 |-  V = ( Vtx ` A )
2 isomgr.w
 |-  W = ( Vtx ` B )
3 isomgr.i
 |-  I = ( iEdg ` A )
4 isomgr.j
 |-  J = ( iEdg ` B )
5 isomgrrel
 |-  Rel IsomGr
6 5 brrelex12i
 |-  ( A IsomGr B -> ( A e. _V /\ B e. _V ) )
7 1 2 3 4 isomgr
 |-  ( ( A e. _V /\ B e. _V ) -> ( A IsomGr B <-> E. f ( f : V -1-1-onto-> W /\ E. g ( g : dom I -1-1-onto-> dom J /\ A. i e. dom I ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) )
8 6 7 syl
 |-  ( A IsomGr B -> ( A IsomGr B <-> E. f ( f : V -1-1-onto-> W /\ E. g ( g : dom I -1-1-onto-> dom J /\ A. i e. dom I ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) ) )
9 8 ibi
 |-  ( A IsomGr B -> E. f ( f : V -1-1-onto-> W /\ E. g ( g : dom I -1-1-onto-> dom J /\ A. i e. dom I ( f " ( I ` i ) ) = ( J ` ( g ` i ) ) ) ) )