Description: Define the class of all isomorphisms between two graphs. In contrast to ( F GraphIso H ) , which is a set of functions between the vertices, ( F GraphIsom H ) is a set of pairs of functions: a function between the vertices, and a function between the (indices of the) edges.
It is not clear if such a definition is useful. In the definition by Diestel p. 3, for example, the bijection between the vertices is called an isomorphism, as formalized in df-grim . (Contributed by AV, 11-Dec-2022) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | df-grisom | |- GraphIsom = ( x e. _V , y e. _V |-> { <. f , g >. | ( f : ( Vtx ` x ) -1-1-onto-> ( Vtx ` y ) /\ g : dom ( iEdg ` x ) -1-1-onto-> dom ( iEdg ` y ) /\ A. i e. dom ( iEdg ` x ) ( f " ( ( iEdg ` x ) ` i ) ) = ( ( iEdg ` y ) ` ( g ` i ) ) ) } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cgrisom | |- GraphIsom |
|
1 | vx | |- x |
|
2 | cvv | |- _V |
|
3 | vy | |- y |
|
4 | vf | |- f |
|
5 | vg | |- g |
|
6 | 4 | cv | |- f |
7 | cvtx | |- Vtx |
|
8 | 1 | cv | |- x |
9 | 8 7 | cfv | |- ( Vtx ` x ) |
10 | 3 | cv | |- y |
11 | 10 7 | cfv | |- ( Vtx ` y ) |
12 | 9 11 6 | wf1o | |- f : ( Vtx ` x ) -1-1-onto-> ( Vtx ` y ) |
13 | 5 | cv | |- g |
14 | ciedg | |- iEdg |
|
15 | 8 14 | cfv | |- ( iEdg ` x ) |
16 | 15 | cdm | |- dom ( iEdg ` x ) |
17 | 10 14 | cfv | |- ( iEdg ` y ) |
18 | 17 | cdm | |- dom ( iEdg ` y ) |
19 | 16 18 13 | wf1o | |- g : dom ( iEdg ` x ) -1-1-onto-> dom ( iEdg ` y ) |
20 | vi | |- i |
|
21 | 20 | cv | |- i |
22 | 21 15 | cfv | |- ( ( iEdg ` x ) ` i ) |
23 | 6 22 | cima | |- ( f " ( ( iEdg ` x ) ` i ) ) |
24 | 21 13 | cfv | |- ( g ` i ) |
25 | 24 17 | cfv | |- ( ( iEdg ` y ) ` ( g ` i ) ) |
26 | 23 25 | wceq | |- ( f " ( ( iEdg ` x ) ` i ) ) = ( ( iEdg ` y ) ` ( g ` i ) ) |
27 | 26 20 16 | wral | |- A. i e. dom ( iEdg ` x ) ( f " ( ( iEdg ` x ) ` i ) ) = ( ( iEdg ` y ) ` ( g ` i ) ) |
28 | 12 19 27 | w3a | |- ( f : ( Vtx ` x ) -1-1-onto-> ( Vtx ` y ) /\ g : dom ( iEdg ` x ) -1-1-onto-> dom ( iEdg ` y ) /\ A. i e. dom ( iEdg ` x ) ( f " ( ( iEdg ` x ) ` i ) ) = ( ( iEdg ` y ) ` ( g ` i ) ) ) |
29 | 28 4 5 | copab | |- { <. f , g >. | ( f : ( Vtx ` x ) -1-1-onto-> ( Vtx ` y ) /\ g : dom ( iEdg ` x ) -1-1-onto-> dom ( iEdg ` y ) /\ A. i e. dom ( iEdg ` x ) ( f " ( ( iEdg ` x ) ` i ) ) = ( ( iEdg ` y ) ` ( g ` i ) ) ) } |
30 | 1 3 2 2 29 | cmpo | |- ( x e. _V , y e. _V |-> { <. f , g >. | ( f : ( Vtx ` x ) -1-1-onto-> ( Vtx ` y ) /\ g : dom ( iEdg ` x ) -1-1-onto-> dom ( iEdg ` y ) /\ A. i e. dom ( iEdg ` x ) ( f " ( ( iEdg ` x ) ` i ) ) = ( ( iEdg ` y ) ` ( g ` i ) ) ) } ) |
31 | 0 30 | wceq | |- GraphIsom = ( x e. _V , y e. _V |-> { <. f , g >. | ( f : ( Vtx ` x ) -1-1-onto-> ( Vtx ` y ) /\ g : dom ( iEdg ` x ) -1-1-onto-> dom ( iEdg ` y ) /\ A. i e. dom ( iEdg ` x ) ( f " ( ( iEdg ` x ) ` i ) ) = ( ( iEdg ` y ) ` ( g ` i ) ) ) } ) |