Step |
Hyp |
Ref |
Expression |
0 |
|
cgrisom |
|- GrIsom |
1 |
|
vx |
|- x |
2 |
|
cvv |
|- _V |
3 |
|
vy |
|- y |
4 |
|
vf |
|- f |
5 |
|
vg |
|- g |
6 |
4
|
cv |
|- f |
7 |
|
cvtx |
|- Vtx |
8 |
1
|
cv |
|- x |
9 |
8 7
|
cfv |
|- ( Vtx ` x ) |
10 |
3
|
cv |
|- y |
11 |
10 7
|
cfv |
|- ( Vtx ` y ) |
12 |
9 11 6
|
wf1o |
|- f : ( Vtx ` x ) -1-1-onto-> ( Vtx ` y ) |
13 |
5
|
cv |
|- g |
14 |
|
ciedg |
|- iEdg |
15 |
8 14
|
cfv |
|- ( iEdg ` x ) |
16 |
15
|
cdm |
|- dom ( iEdg ` x ) |
17 |
10 14
|
cfv |
|- ( iEdg ` y ) |
18 |
17
|
cdm |
|- dom ( iEdg ` y ) |
19 |
16 18 13
|
wf1o |
|- g : dom ( iEdg ` x ) -1-1-onto-> dom ( iEdg ` y ) |
20 |
|
vi |
|- i |
21 |
20
|
cv |
|- i |
22 |
21 15
|
cfv |
|- ( ( iEdg ` x ) ` i ) |
23 |
6 22
|
cima |
|- ( f " ( ( iEdg ` x ) ` i ) ) |
24 |
21 13
|
cfv |
|- ( g ` i ) |
25 |
24 17
|
cfv |
|- ( ( iEdg ` y ) ` ( g ` i ) ) |
26 |
23 25
|
wceq |
|- ( f " ( ( iEdg ` x ) ` i ) ) = ( ( iEdg ` y ) ` ( g ` i ) ) |
27 |
26 20 16
|
wral |
|- A. i e. dom ( iEdg ` x ) ( f " ( ( iEdg ` x ) ` i ) ) = ( ( iEdg ` y ) ` ( g ` i ) ) |
28 |
12 19 27
|
w3a |
|- ( f : ( Vtx ` x ) -1-1-onto-> ( Vtx ` y ) /\ g : dom ( iEdg ` x ) -1-1-onto-> dom ( iEdg ` y ) /\ A. i e. dom ( iEdg ` x ) ( f " ( ( iEdg ` x ) ` i ) ) = ( ( iEdg ` y ) ` ( g ` i ) ) ) |
29 |
28 4 5
|
copab |
|- { <. f , g >. | ( f : ( Vtx ` x ) -1-1-onto-> ( Vtx ` y ) /\ g : dom ( iEdg ` x ) -1-1-onto-> dom ( iEdg ` y ) /\ A. i e. dom ( iEdg ` x ) ( f " ( ( iEdg ` x ) ` i ) ) = ( ( iEdg ` y ) ` ( g ` i ) ) ) } |
30 |
1 3 2 2 29
|
cmpo |
|- ( x e. _V , y e. _V |-> { <. f , g >. | ( f : ( Vtx ` x ) -1-1-onto-> ( Vtx ` y ) /\ g : dom ( iEdg ` x ) -1-1-onto-> dom ( iEdg ` y ) /\ A. i e. dom ( iEdg ` x ) ( f " ( ( iEdg ` x ) ` i ) ) = ( ( iEdg ` y ) ` ( g ` i ) ) ) } ) |
31 |
0 30
|
wceq |
|- GrIsom = ( x e. _V , y e. _V |-> { <. f , g >. | ( f : ( Vtx ` x ) -1-1-onto-> ( Vtx ` y ) /\ g : dom ( iEdg ` x ) -1-1-onto-> dom ( iEdg ` y ) /\ A. i e. dom ( iEdg ` x ) ( f " ( ( iEdg ` x ) ` i ) ) = ( ( iEdg ` y ) ` ( g ` i ) ) ) } ) |