Metamath Proof Explorer


Definition df-hmo

Description: Define the set of Hermitian (self-adjoint) operators on a normed complex vector space (normally a Hilbert space). Although we define it for any normed vector space for convenience, the definition is meaningful only for inner product spaces. (Contributed by NM, 26-Jan-2008) (New usage is discouraged.)

Ref Expression
Assertion df-hmo HmOp=uNrmCVectdomuadju|uadjut=t

Detailed syntax breakdown

Step Hyp Ref Expression
0 chmo classHmOp
1 vu setvaru
2 cnv classNrmCVec
3 vt setvart
4 1 cv setvaru
5 caj classadj
6 4 4 5 co classuadju
7 6 cdm classdomuadju
8 3 cv setvart
9 8 6 cfv classuadjut
10 9 8 wceq wffuadjut=t
11 10 3 7 crab classtdomuadju|uadjut=t
12 1 2 11 cmpt classuNrmCVectdomuadju|uadjut=t
13 0 12 wceq wffHmOp=uNrmCVectdomuadju|uadjut=t